
Fast, Practical and Scalable
First-Order Methods for Modern

Machine Learning Problems

ZHOU, Kaiwen

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
December 2022

Thesis Assessment Committee

Professor WONG Man Hon (Chair)
Professor CHENG James (Thesis Supervisor)

Professor SO Anthony Man Cho (Committee Member)
Professor KE Kelly Yiping (External Examiner)

i

Abstract of thesis entitled:
Fast, Practical and Scalable First-Order Methods for Modern Machine Learning
Problems
Submitted by ZHOU, Kaiwen
for the degree of Doctor of Philosophy in Computer Science and Engineering
at The Chinese University of Hong Kong in December 2022

In recent years, due to the increasing dimensionality of optimization problems
in the machine learning community, first-order methods—basically gradient descent
and its variants—become a popular choice of optimizer. The reason is that these
methods are known to be dimension-free, i.e., their iteration complexity is indepen-
dent of dimensionality. Classic complexity theory focuses on establishing worst-case
convergence guarantees for these first-order methods. This analysis is tradition-
ally conducted based on abstract mathematical intuition of the experts. A recent
trend in the optimization community focuses on using computer-aided tools to assist
the worst-case analysis or to discover new methods. The idea is to formulate the
worst-case analysis as another optimization problem, which is usually a semidefinite
program (SDP). Solving the SDP gives us numerics that provide hints for conducting
the worst-case analysis. This methodology is promising for its capability of discov-
ering tight proofs that are hard or even impossible for human experts to find with
bare hands. With the help of this methodology, in this thesis, we describe several
of our algorithmic discoveries that have the properties of being (i) fast, sometimes
the theoretically fastest known scheme in its setting, (ii) practical, i.e., being imple-
mentable without impractical algorithmic components, being memory-efficient and
has a simple intuitive scheme, and (iii) scalable, works in a restrictive asynchronous
lock-free setting that fully utilizes the parallel computing architectures, which bene-
fits large-scale machine learning tasks.

Optimizing neural networks, on the other hand, does not directly benefit from
this methodology due to its overly complicated objective structure. We show that we
can gain some insight from our algorithmic discoveries, and then empirically extend
them to the deep learning setting, which results in new schemes that are efficient
and competitive for deep learning tasks. For the theoretic side of neural network
optimization, we also make some initial attempt on deriving theoretically grounded
neural network optimizers that are guaranteed to converge to an approximated sta-
tionary point.

ii

摘要：

隨著近幾年機器學習領域中優化問題維度的不斷增大，以梯度下降及其變種
為代表的一階優化演算法成為了機器學習領域中最熱門的優化器。這其中的原因
在於這些方法的迭代複雜度與維數無關。在傳統的複雜度理論中，對於一階優化
演算法的理論分析專註於建立最壞情況下的迭代複雜度。相關的理論推導也往往
高度依賴於優化專家的數學直覺。近幾年，在運籌優化領域裏興起了一類使用計
算機的數值工具來輔助複雜度分析甚至是探索新演算法的研究思路。這類思路可
以概括為將優化演算法的理論分析描述為另一個優化問題（往往是半正定編程問
題），然後使用數值優化的工具來求解這個優化問題，其返回的數值解可以為理
論分析提供指引。這一套方法論的獨到之處在於它能夠發現一些相當複雜的，人
類難以徒手推導得到的證明。本論文受到這套方法論的指引，提出了幾個全新的
演算法。這些演算法擁有以下幾種優勢中的一點或多點：（一）快速，其中幾個
演算法是在它們對應的理論場景中目前收斂速度最快的演算法；（二）實際，即
演算法中不包含無法實施的部分，且存儲需求小，演算法框架清晰簡潔；（三）
高可擴展性，即演算法可以在條件苛刻的異步無鎖分佈式並行計算框架下實施，
可以提升超大規模機器學習任務的訓練效率。
然而，對於神經網路的優化，由於其目標函數的結構過於複雜，目前還無法直

接受益於此方法論。本論文中對於神經網路優化，我們利用之前所提的演算法帶
來的指引，將這些演算法技術擴展至深度學習訓練當中，最終提出了幾個具有競
爭力的高效神經網路優化器。在神經網路的理論探索方面，本論文也做出了一些
初步的探索，目標是構建具有理論上收斂保證的神經網路優化器。

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. James Cheng,
for providing the support and guidance during my PhD study, and for his patience
and knowledge in helping me revising my papers. He has taught me how to become an
excellent researcher. I would also like to specially thank Prof. Anthony Man-Cho So
for having multiple fruitful discussion with me, and for his insightful comments and
suggestion on revising my papers. His outstanding mathematical intuition inspired
me in all the time of my research and writing of this thesis.

I also learned a lot from my collaborators during the PhD study. I would like
to thank (in alphabetical order) Yongqiang Chen, Xinyan Dai, Qinghua Ding, Ruize
Gao, Chenhan Jin, Tian Lai, Kaili Ma, Jiongxiao Wang, Binghui Xie, Han Yang and
Yonggang Zhang for their extremely useful discussion and important contribution in
our coauthored papers. In addition, it is my great pleasure to have other teammates
in the Husky data lab to be my close friends.

Last but not the least, I give my special thanks to my parents, Guizi Zhou and
Meiqin Zhou, for their continuous support and encouragement during my PhD study.
No words could express my gratitude. I can only try my best to be a good son, and
love you back in the same way you love me.

Contents

1 Introduction 1
1.1 Machine Learning Problems . 2
1.2 Literature on Finite-Sum Optimization 4
1.3 Worst-Case Analysis . 6
1.4 Computer-Aided Worst-Case Analysis 6
1.5 Thesis Organization . 9
1.6 Publications Related to This Thesis 11

2 Even Faster First-Order Methods for Strongly Convex Problems 12
2.1 The Shifting Methodology . 12
2.2 Tackling the Shifted Objective . 14
2.3 Deterministic Objectives . 17
2.4 Finite-Sum Objectives with Incremental First-Order Oracle 20
2.5 Finite-Sum Objectives with Incremental Proximal Point Oracle 23
2.6 Performance Evaluations . 25
2.7 Chapter Summary and Discussion . 27

3 Practical First-Order Methods for Finding Near-Stationary Points 28
3.1 Motivations . 28
3.2 OGM-G: “Momentum” Reformulation and a Memory-Saving Variant 32
3.3 Accelerated SVRG: Fast Rates for Both Gradient Norm and Objective 35
3.4 Near-Optimal Accelerated SVRG with Adaptive Regularization . . . 39
3.5 Chapter Summary and Discussion . 42

4 Optimal Asynchronous Lock-Free Stochastic First-Order Method 43
4.1 Serial Sparse Accelerated SVRG . 45
4.2 Asynchronous Sparse Accelerated SVRG 49
4.3 Experiments . 52
4.4 Chapter Summary . 56

iv

CONTENTS v

5 Neural Network Optimization: A Robust Nesterov’s Momentum 57

5.1 Notations and General Norm Setup 58

5.2 Amortized Nesterov’s Momentum . 59

5.3 Convergence Results . 63

5.4 Amortized Momentum for Deep Learning 66

5.5 Experiments . 69

5.6 Chapter Summary . 72

6 Neural Network Theory: Finding Approximately Stationary Points 73

6.1 Prior Arts . 73

6.2 Perturbed Stochastic INGD . 74

6.3 Finite-Time & Dimension-Independent Guarantee 75

7 Conclusion 77

A Appendix for Chapter 2 79

A.1 Technical Lemmas with Proofs . 79

A.2 Proofs of Section 2.3 . 81

A.3 Proofs of Section 2.4 . 84

A.4 Proof of Section 2.5 (Theorem 3) . 94

A.5 Experimental Setup . 95

A.6 Analyzing NAG using Lyapunov Function 96

B Appendix for Chapter 3 100

B.1 Numerical Results of Acc-SVRG-G 100

B.2 Proofs of Section 3.2 . 102

B.3 Proofs of Section 3.3 . 107

B.4 Proofs of Section 3.4 . 112

B.5 Katyusha + L2S . 120

C Appendix for Chapter 4 121

C.1 Proof of Lemma 3 . 121

C.2 Proof of Theorem 11 . 122

C.3 Proof of Theorem 12 . 124

C.4 The Effect of the Constant ω . 128

C.5 Justifying the
√
κ Dependence . 129

C.6 Sanity Check for Our Implementation 130

C.7 Experimental Setup . 130

vi CONTENTS

D Appendix for Chapter 5 132
D.1 Extra Experimental Results . 132
D.2 Technical Lemma . 143
D.3 Proof of Lemma 4 . 143
D.4 Proof of Theorem 13a . 146
D.5 Proof of Theorem 13b . 148
D.6 Proof of Theorem 14 . 150
D.7 Experimental Setup . 152

E Appendix for Chapter 6 154
E.1 Proof of Theorem 15 . 154

List of Figures

2.1 A comparison of the expected worst-case rate factors. 25

2.2 Evaluations. (a) Quadratic, L = 1, µ = 10−3. (b) ℓ2-logistic regres-
sion, µ = 10−3. (c) Ridge regression, µ = 5× 10−7. (d) (e) ℓ2-logistic
regression, µ = 10−8. 26

3.1 Contours of f(x) =
x21+5x22

2
[114] and its squared gradient norm ∥∇f(x)∥2. 29

4.1 An asynchronous lock-free master-worker parallel computation model. 44

4.2 Ablation study for the practical effect of sparse variance correction
(abbreviated as SVC in the legends). Run 10 seeds. Shaded bands
indicate ±1 standard deviation. 53

4.3 Running time comparison between using sparse gradient estimator
and lagged update (abbreviated as LU in the legends). The wall-clock
time and objective value are averaged over 10 runs. 54

4.4 Convergence and speed-up for asynchronous sparse methods. Speed-
up is the improvement on the wall-clock time to achieve 10−5 sub-
optimality relative to using a single thread. 55

5.1 Graphical illustration of Amortized Nesterov’s Momentum. This fig-
ure describes how the momentum is injected into the sequence of gra-
dient descent {xk}. 60

5.2 ResNet34 on CIFAR-10. For all methods, initial learning rate η0 = 0.1,
momentum β = 0.9, run 5 seeds (start at same x0). In (a) (b), we
plot mean curves with shaded bands indicate ±1 standard deviation.
(c) shows the standard deviation of test accuracy and its average over
90 epochs. 67

5.3 ResNet34 on CIFAR-10. For all methods, η0 = 0.1, β = 0.9, using
same x0. Labels of AM1-SGD are ‘AM1-SGD-{Option}’. Shaded
bands (or bars) indicate ±1 standard deviation. 68

vii

viii LIST OF FIGURES

5.4 ResNet on ImageNet. Run 3 seeds. Shaded bands indicate±1 standard
deviation. 70

5.5 LSTM on Penn Treebank. 72

B.1 Run 20 seeds. Shaded bands indicate ±1 standard deviation. 100

C.1 The practical effect of ω. RCV1.train, run 10 seeds. The circle marks
the restarting points, i.e., {xr}. Shaded bands indicate ±1 standard
deviation. 128

C.2 Justifying the
√
κ dependence. Run 10 seeds. Shaded bands indicate

±1 standard deviation. 129

C.3 Sanity check. a9a.dense, µ = 10−6. Run 20 seeds. Shaded bands
indicate ±1 standard deviation. 130

D.1 Convergence of test accuracy from the parameter sweep experiments
in Table D.1. Labels are formatted as ‘AM1/2-SGD-{Option}-{m}’. 135

D.2 ResNet18 with pre-activation on CIFAR-10. For all methods, η0 =
0.1, β = 0.9, run 20 seeds. For AM1-SGD, m = 5 and its labels
are formatted as ‘AM1-SGD-{Option}’. Shaded bands indicate ±1
standard deviation. 135

D.3 ResNet18 with pre-activation on CIFAR-10. For all methods, η0 =
0.1, β = 0.9, run 20 seeds. For AM1-SGD, m = 5. Shaded bands
indicate ±1 standard deviation. 136

D.4 ResNet34 on CIFAR-10. η0 = 0.1, β ∈ {0.9, 0.95, 0.99}, run 5 seeds
(the β = 0.9 results are copied from Table D.1). Labels are formatted
as “{Algorithm}-{β}”. 136

D.5 ResNet34 on CIFAR-10. Run 5 seeds. The results of AM1-SGD and
M-SGD are copied from Table D.1. 137

D.6 ResNet18 on CIFAR-10. η0 = 0.1, β ∈ {0.95, 0.995}. ‘+’ represents
performing a restart after each learning rate reduction. 139

D.7 ResNet18 on CIFAR-10. Using cosine annealing scheduler (without
restarts), η0 = 0.1, β = 0.995. 139

D.8 DenseNet121 on CIFAR-100. For all methods, η0 = 0.1, β = 0.9, run
3 seeds. AM1-SGD and AM2-SGD use Option II and m = 5. Shaded
bands indicate ±1 standard deviation. 140

D.9 Comparisons between AM1-SGD and M-SGD (AC-SA) in different
noise levels. m = 10, run 10 seeds. Shaded bands indicate±1 standard
deviation. 141

LIST OF FIGURES ix

D.10 Effect of choosing different m. Run 10 seeds. Shaded bands indicate
±1 standard deviation. 141

D.11 Sanity check. Labels are formatted as ‘AM{1/2}-SGD-{Option}-{m}’. 142

List of Tables

1.1 Summary of the theoretic setting in each chapter. 9

3.1 Finding near-stationary points ∥∇f(x)∥ ≤ ϵ of convex finite-sums. . . 30

4.1 Summary of the datasets. Density is the ratio of non-zero elements. . 53

5.1 Detailed data of the curves in Figure 5.3b. 69
5.2 ResNet on ImageNet. Run 3 seeds. Shaded bands indicate±1 standard

deviation. 70
5.3 LSTM on Penn Treebank. 72

D.1 Final test accuracy and average accuracy STD of training ResNet34
on CIFAR-10 over 5 runs (including the detailed data of the curves in
Figure 5.2 and Figure 5.3a). For all the methods, η0 = 0.1, β = 0.9.
Multiple runs start with the same x0. 133

D.2 ResNet18 with pre-activation on CIFAR-10. For all methods, η0 =
0.1, β = 0.9, run 20 seeds. For AM1-SGD, m = 5 and its labels
are formatted as ‘AM1-SGD-{Option}’. Shaded bands indicate ±1
standard deviation. 135

D.3 ResNet18 with pre-activation on CIFAR-10. For all methods, η0 =
0.1, β = 0.9, run 20 seeds. For AM1-SGD, m = 5. Shaded bands
indicate ±1 standard deviation. 136

D.4 ResNet34 on CIFAR-10. η0 = 0.1, β ∈ {0.9, 0.95, 0.99}, run 5 seeds
(the β = 0.9 results are copied from Table D.1). Labels are formatted
as “{Algorithm}-{β}”. 136

D.5 ResNet34 on CIFAR-10. Run 5 seeds. The results of AM1-SGD and
M-SGD are copied from Table D.1. 137

x

Chapter 1

Introduction

Optimization problems naturally arise in various quantitative scientific disciplines,
such as computer science, operation research, physics and economics. It is usually the
case that these problems have distinct structures (i.e., different objective function
properties, constraints and optimality measures). This fact makes optimization a
research area where there is not a single best performing method in every situation.
Usually, practitioner chooses an optimizer based on the task at hand. Thus, designing
algorithms tailored for various optimization tasks has been the focus of optimization
research for years.

In the last decade, due to the surge of machine learning applications, research on
designing efficient machine learning optimizers has gained even more popularity. Ma-
chine learning models, especially those composed of deep neural networks, typically
have millions or even billions of parameters, which makes the parameter-training
task an extremely high-dimensional optimization problem. Due to this fact, research
in this area mainly focuses on developing first-order methods, i.e., gradient descent
(GD) and its variants, as they are known to be dimension-free, i.e., their iteration
complexity is independent of dimensionality.

The theme of this thesis is to design new first-order algorithms for various machine
learning tasks such as the training of logistic regression, ridge regression, LASSO,
SVM and deep neural networks. Since the development will mainly focus on the
theoretic properties of optimization algorithms, in the following sections, we pro-
vide some necessary background, do a brief literature review and define the general
notations of this thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Machine Learning Problems

The basic formulation of an unconstrained optimization problem is: Given a function
f : Rd → R, we solve for1 x⋆ = argminx∈Rd f(x), where Rd is the d-dimensional
Euclidean space. Without any regularity imposed on f , it is impossible to obtain
a (theoretically) meaningful solution x⋆ [107]. Before diving into various regularity
conditions of f , let us first look at some simple machine learning problems. Below
we present the training objectives of several classic binary classification tasks. This
training process is called the empirical risk minimization [15]. We denote {ai ∈
Rd, bi ∈ {−1,+1}}ni=1 as the data vectors and labels in the training dataset (totally
n data samples), and λ > 0 is the amount of regularization.

• Binary ℓ2-logistic regression:

f(x) =
1

n

n∑
i=1

log
(
1 + exp (−bi ⟨ai, x⟩)

)
+
λ

2
∥x∥2 ,

where ∥·∥ is the ℓ2-norm (or Euclidean norm) and ⟨·, ·⟩ is the inner product.

• Ridge regression:

f(x) =
1

2n

n∑
i=1

(⟨ai, x⟩ − bi)2 +
λ

2
∥x∥2 .

• LASSO (Least Absolute Shrinkage and Selection Operator [147]):

f(x) =
1

2n

n∑
i=1

(⟨ai, x⟩ − bi)2 + λ ∥x∥1 ,

where ∥·∥1 is the ℓ1-norm.

• SVM (Support Vector Machine [23]):

f(x) =
1

n

n∑
i=1

max {0, 1− bi ⟨ai, x⟩}+
λ

2
∥x∥2 .

1We only consider unconstrained problems in this thesis, since it is the most common type of
problems in machine learning community. We do not use boldface letters to represent vector, which
is a convention in optimization community.

1.1. MACHINE LEARNING PROBLEMS 3

We would usually hope for a single optimizer that works reasonably well for a
class of similar tasks such as the above ones, although faster algorithms may exist
if we only focus on one specific objective. The trade-off is that: The more problem
structure we utilize, the faster the derived algorithm could possibly be, but the less
likely it is for the algorithm to generalize to other problems. Two common properties
of the above objective functions are that they all have a finite-sum structure:2

f(x) =
1

n

n∑
i=1

fi(x), (Finite-Sum)

and that they are all convex (f and each fi):

Definition 1 (Convexity). A function f : Rd → R is said to be convex if for all
0 ≤ t ≤ 1 and all x, y ∈ Rd, it holds that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Without the finite-sum structure, general convex optimization has been studied
for decades, and it is widely regarded that convex problems are well-solved. However,
due to the advances in machine learning, finite-sum convex optimization has gained a
lot of attention recently. Since empirical risk minimization plays a key role in almost
all the machine learning applications, including the training of deep neural networks
[50], devising efficient optimizers for finite-sum objectives becomes a very popular
research topic. Clearly, neural networks are non-convex in general. We will discuss
them shortly. Another common objective property of binary ℓ2-logistic regression,
ridge regression and SVM is that they are all λ-strongly convex (f and each fi):

Definition 2 (µ-strong convexity). A function f : Rd → R is said to be µ-strongly
convex if for all x, y ∈ Rd, it holds that

f(x) ≥ f(y) + ⟨G, x− y⟩+ µ

2
∥x− y∥2 ,

where G ∈ ∂f(y), the set of sub-gradient [107] of f at y .

LASSO is not strongly convex in general due to its ℓ1-regularizer. As the name
suggests, strong convexity often leads to faster convergence of the optimizers both
empirically and theoretically. Another key factor affecting the convergence rate is
the differentiability. L-smoothness is the typical regularity condition for continuously
differentiable functions, defined as follows:

2Here we absorb the regularizer ∥x∥2 or ∥x∥1 into the summation as they are independent of i.

4 CHAPTER 1. INTRODUCTION

Definition 3 (L-smoothness). A differentiable function f : Rd → R is said to be L-
smooth if its gradient is L-Lipschitz continuous, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥
for all x, y ∈ Rd. Equivalently, f is L-smooth if for all x, y ∈ Rd, it satisfies that

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2 .

The objective functions (f and each fi) of ℓ2-logistic regression and ridge re-
gression are L-smooth, and they also have simple closed-form expressions for their
smoothness constants L. The objectives of LASSO and SVM are not differentiable
due to the ℓ1-regularizer and the max operator, respectively. For non-differentiable
objectives, we usually characterize them using the Lipschitz continuity condition:

Definition 4 (L0-Lipschitz continuity). A function f : Rd → R is said to be L0-
Lipschitz continuous if for all x, y ∈ Rd, |f(x)− f(y)| ≤ L0 ∥x− y∥.

Thus far, we have introduced the regularity conditions that are satisfied by bi-
nary ℓ2-logistic regression, ridge regression, LASSO and SVM. However, an impor-
tant class of machine learning problems is not discussed, that is neural network
optimization. Due to the flexibility in its design, neural network is non-smooth and
non-convex in general. It seems that we could only use the Lipschitz continuity to
characterize them. In fact, it is still an open question on how to identify useful prop-
erties of neural networks that can be used to analyze or construct algorithms [97, 13].
We discuss the existing strategies and some theoretic development in neural network
optimization in details in Chapters 5 and 6. We define the following notations which
will be used throughout the thesis.

Notations. We let [n] denote the set {1, 2, . . . , n}, E denote the total expectation
and Eik denote the expectation with respect to a random sample ik. We use [x]v to
denote the coordinate v of the vector x ∈ Rd, and for a subset T ⊆ [d], [x]T denotes
the collection of [x]v for v ∈ T . We let ⌈·⌉ denote the ceiling function, Id denote the
identity matrix and (α)+ ≜ max {α, 0}. We define κ ≜ L

µ
, which is always called the

condition ratio.

1.2 Literature on Finite-Sum Optimization

There is a lot of recent progress on optimizing objective functions with a finite-sum
structure. Here we briefly summarize the existing literature on finite-sum optimiza-
tion where the objective function is assumed to be L-smooth and µ-strongly convex

1.2. LITERATURE ON FINITE-SUM OPTIMIZATION 5

(satisfied by ℓ2-logistic regression and ridge regression), which is a typical theoretic
setting considered in these works. We mainly discuss works that focus on improving
the worst-case convergence rates under this setting.

The finite-sum problem with n = 1 is the classic smooth strongly convex setting.
Standard analysis shows that for this problem, GD with 2

L+µ
stepsize converges

linearly at a (κ−1
κ+1

)2 rate (see the textbook [109]). The heavy-ball method [123]
fails to converge globally on this problem [86]. The celebrated Nesterov Accelerated
Gradient method (NAG) is proven to achieve a faster 1− 1/

√
κ rate [109]. This rate

remains the fastest one until recently, Scoy et al. [134] proposed the Triple Momentum
method (TM) that converges at a (1−1/

√
κ)2 rate. Numerical results in Lessard and

Seiler [85] suggest that this rate is not improvable. In terms of reducing ∥x− x⋆∥2
to ϵ, TM is stated to have an O

(
(
√
κ/2)(log 1

ϵ
+ log

√
κ)
)
iteration complexity (cf.

Table 2, [134]) compared with the O(
√
κ log 1

ϵ
) complexity of NAG.

In the general convex setting, recent works [68, 8, 69] propose new schemes such
as OGM, G-OGM that have lower complexity than the original NAG. Several of
these new schemes were discovered based on the recent works that use semidefinite
programming to study worst-case performances of first-order methods, which will be
discussed in details in the following sections. Starting from the performance esti-
mation framework introduced in Drori and Teboulle [37], many different approaches
and extensions have been proposed [86, 141, 145, 144, 143].

For the n ≥ 1 case, stochastic gradient descent (SGD) [126], which uses com-
ponent gradients ∇fi(x) to estimate the full gradient ∇f(x), achieves a lower it-
eration cost than GD. However, SGD only converges at a sub-linear rate. To fix
this issue, various variance reduction techniques have been proposed recently, such
as SAG [130, 133], SVRG [64, 152], SAGA [29], SDCA [136] and SARAH [111].
Inspired by the Nesterov’s acceleration technique, accelerated stochastic variance-
reduced methods have been proposed in pursuit of the lower bound Ω(n+

√
nκ log 1

ϵ
)

[151], such as Acc-Prox-SVRG [113], APCG [93], ASDCA [137], APPA [44], Cata-
lyst [91], SPDC [156], RPDG [79], Point-SAGA [27] and Katyusha [4]. Among these
methods, Katyusha and Point-SAGA, representing the first two directly accelerated
incremental methods, achieve the fastest rates. Point-SAGA leverages a more pow-
erful incremental proximal operator oracle. Katyusha introduces the idea of negative
momentum, which serves as a variance reducer that further reduces the variance of
the SVRG estimator. This construction motivates several new accelerated methods
[158, 3, 81, 77, 159, 160].

6 CHAPTER 1. INTRODUCTION

1.3 Worst-Case Analysis

To examine the efficiency of an optimizer for a class of optimization problem, a
direct thought is that we could conduct multiple numerical experiments and observe
its performance. However, since it is usually hard or even impossible to exhaustively
evaluate the performance on every instance of the optimization problem, numerical
experiments may not be able to provide a strong performance guarantee. This is
the situation where we resort to worst-case convergence analysis. Take GD [19] as
an example. GD takes an initial guess x0 ∈ Rd and iteratively updates: xk+1 =
xk − η∇f(xk), for k = 0, 1, . . . , K − 1, where η > 0 is the step size. Suppose that
we use GD to minimize an L-smooth and convex objective function f . The worst-
case analysis is conducted by formulating the properties in Definitions 1 and 3 over
the sequence of GD {x0, x1, . . . , xK} and x⋆, and then carefully manipulating the
inequalities to produce an upper bound of the form [12]:

f(xK)− f(x⋆) ≤
L ∥x0 − x⋆∥2

2K
. (1.1)

This upper bound tells us that no matter which objective instance f we are optimiz-
ing, as long as it is L-smooth and convex, afterK iterations of GD, the function value

gap f(xK)− f(x⋆) is guaranteed to be bounded by L∥x0−x⋆∥2
2K

, and this upper bound
goes to 0 and K →∞. This type of inequality is usually called the non-asymptotic
worst-case convergence guarantee, as it characters the convergence of the function
value gap f(xK)− f(x⋆) at any iteration K.

All the theoretic discussion in this thesis aims to establish convergence guarantees
of this form. Traditionally, deriving such guarantee relies on brainstorming and ab-
stract mathematical intuition of the optimization experts. It is then natural to ask:

Is there a more principled way to conduct worst-case analysis?

1.4 Computer-Aided Worst-Case Analysis

A recent trend in optimization community focuses on using computer-aided ap-
proaches to assist the worst-case analysis, which is pioneered by the work [37]. The
development in Chapters 2, 3, 4 are all based on or inspired by such methodology.
The main idea is to formulate the worst-case analysis as another optimization prob-
lem and use existing solvers to obtain a numerical solution. Such numerics can inspire
a symbolic worst-case analysis. To give an example, here we formulate the worst-
case analysis of GD as an optimization problem (which is called the performance

1.4. COMPUTER-AIDED WORST-CASE ANALYSIS 7

estimation problem (PEP) [37]):

max
f :Rd→R

f(xK)− f(x⋆)

subject to function f is L-smooth and convex,

xk+1 = xk − η∇f(xk), k = 0, . . . , K − 1,

∥x0 − x⋆∥ ≤ R0,

x0, . . . , xK , x
⋆ ∈ Rd.

(P1)

The intuition of (P1) is to find the “worst” function that maximizes the function
value gap at K-th iterate of GD. At first glance, the constraint “function f being
L-smooth and convex” looks impossible to solve. A direct thought is to relax it.
Denoting the set I = {x0, . . . , xK , x⋆}, we can relax (P1) as

max
∇f(x0),...,∇f(xK)∈Rd

f(x0),...,f(xK),f(x⋆)∈R

f(xK)− f(x⋆)

subject to ∀xi, xj ∈ I,

f(xi) ≤ f(xj) + ⟨∇f(xj), xi − xj⟩+
L

2
∥xi − xj∥2 ,

f(xi) ≥ f(xj) + ⟨∇f(xj), xi − xj⟩,
xk+1 = xk − η∇f(xk), k = 0, . . . , K − 1,

∥x0 − x⋆∥ ≤ R0,

x0, . . . , xK , x
⋆ ∈ Rd.

(P2)

Clearly, this simple discretization forms a necessary condition to “function f being
L-smooth and convex”. Thus, for the optimal values, we have (P1) ≤ (P2). One
would naturally ask whether this discretization is a sufficient condition. In other
words, it is to ask if we have several vectors and scalars ∇f(x0), . . . ,∇f(xK) ∈ Rd,
f(x0), . . . , f(xK), f(x

⋆) ∈ R satisfying the inequalities in (P2), does there exist an L-
smooth and convex function f which interpolates these function values and gradients
at x0, . . . , xK , x

⋆? The answer is, perhaps surprisingly, no. See Figure 1 in [145] for a
counterexample. In the same work, Taylor et al. [145] discovered that the necessary
and sufficient condition for the existence of an L-smooth convex f interpolating the
set of triples {(xi,∇f(xi), f(xi)) | xi ∈ I} is

f(xi)− f(xj)− ⟨∇f(xj), xi − xj⟩ ≥
1

2L
∥∇f(xi)−∇f(xj)∥2 ,∀xi, xj ∈ I. (1.2)

8 CHAPTER 1. INTRODUCTION

We call it the interpolation condition throughout the thesis. Formulating the PEP
with this condition, we obtain

max
∇f(x0),...,∇f(xK)∈Rd

f(x0),...,f(xK),f(x⋆)∈R

f(xK)− f(x⋆)

subject to ∀xi, xj ∈ I,

f(xi)−f(xj)−⟨∇f(xj), xi−xj⟩ ≥
1

2L
∥∇f(xi)−∇f(xj)∥2 ,

xk+1 = xk − η∇f(xk), k = 0, . . . , K − 1,

∥x0 − x⋆∥ ≤ R0,

x0, . . . , xK , x
⋆ ∈ Rd.

(P3)

Thus, for the optimal values, it satisfies that (P1) = (P3).
After suitable reformulation, (P3) is an semidefinite programming (SDP) prob-

lem, so we have zero duality gap [14]. Given constants L, K and R0, and fixing η = 1
L
,

we can use an existing SDP solver such as MOSEK to solve (P3), which returns the
exact worst-case performance of GD. A very nice property is that the primal solution
of (P3) specifies the f on which GD performs poorly (i.e., the lower bound), and
the dual solution of (P3) is the multipliers of the constraints, from which we can

derive an upper bound f(xK)− f(x⋆) ≤ LR2
0

4K+2
[37]. This upper bound is tighter than

(1.1) from the previous work [12] by a factor of 2. In fact, since we have zero duality
gap, this upper bound is the tightest possible one for GD, that is, there exists an
f , on which GD converges with this upper bound holding as equality. The analytic
expression of the “worst” function f can also be derived from the numerical solution
of (P3) [37], demonstrating the significance of this PEP methodology.

An intriguing feature of this methodology is that the discovered worst-case anal-
ysis is usually pretty complicated, which seems impossible to find with bare hands.
For example, the above tight analysis of GD requires the following potential function
(a common analytic component in conducting worst-case analysis [10]):

ϕ(xk) =
(4K + 2)k

2K − k
(
f(xk)− f(x⋆)

)
+

L (4K + 2) (K − k)
(2K + 1− k)(2K − k)

∥xk − x⋆∥2 .

The coefficients are too complicated for human experts to discover barehanded.

1.5. THESIS ORGANIZATION 9

1.5 Thesis Organization

Table 1.1: Summary of the theoretic setting in each chapter.

Problem Oracle Assumptions Chapter

min
x∈Rd

1

n

n∑
i=1

fi(x)

Incremental gradient oracle ∇fi(x)
Incremental proximal point oracle [27]

Smoothness
Strong convexity

Chapter 2

Incremental gradient oracle ∇fi(x)
Smoothness
Convexity

Chapter 3

Incremental gradient oracle ∇fi(x)
with sparsity [98]

Smoothness
Strong convexity

Chapter 4

min
x∈X

f(x) + h(x) Stochastic approximation oracle [103]
Proximal oracle proxh(x,G) [46]

Smoothness
Convexity

Bounded variance

Chapter 5

Find approx.
stationary
point

Stochastic approximation oracle [103] Lipschitz continuity
Bounded variance

Chapter 6

This thesis is organized as follows (detailed theoretic settings are given in Table 1.1):

• Chapter 2 presents 4 theoretically faster algorithms for strongly convex finite-
sum problems equipped with various oracles.3 The derivation is inspired by
the PEP methodology mentioned in the introduction. The proposed methods
achieve the fastest known convergence rates in their corresponding cases.4

• Chapter 3 focuses on finding near-stationary points ∥∇f(x)∥ ≤ ϵ of smooth
convex finite-sum problems, which is motivated by several real world applica-
tions and facts. We derived 3 new schemes that are more practical than their
existing counterparts based on novel usages of the PEP methodology.

3Oracle basically means the information available to any algorithm that solves the problem.
Oracle complexity (or simply complexity) refers to the required number of oracle calls to find an
ϵ-accurate solution.

4At the time [161] was published. A recent work [142] further extends the techniques in [161]
and achieves the fastest possible rate in the deterministic strongly convex setting.

10 CHAPTER 1. INTRODUCTION

• Chapter 4 proposes the first asynchronous lock-free method with optimal gra-
dient complexity. This new method is scalable as it fully utilizes the parallel
computing architectures such as multi-core computer or distributed system,
and is thus highly efficient for large-scale machine learning tasks. The deriva-
tion of this method is inspired by the development in Chapter 3.

• Chapter 5 aims to improve neural network optimization, and proposes a new
robust momentum technique based on insights from stochastic convex analysis.
Its efficacy is empirically verified by extensive deep learning experiments.

• Chapter 6 concerns the theoretic foundation of neural network optimization,
in which we propose the first practical stochastic gradient method that is guar-
anteed to find an approximately stationary points of neural networks with
finite-time and dimension-independent complexity.

• Chapter 7 concludes this thesis and discusses some future directions.

We defer all the proofs to the appendices to improve the readability.

Connections Between Different Chapters. As can be seen from the above,
Chapters 2, 3 and 4 are connected through the PEP methodology, as they either get
inspiration from the numerical solution of a PEP or provide new ideas for the PEP
formulation. Moreover, Chapters 2, 3 and 4 all focus on finite-sum convex optimiza-
tion. Chapters 5 and 6 both study neural network optimization, while Chapter 5
focuses on providing a better empirical neural network optimizer and Chapter 6 aims
to build theoretically grounded neural network optimizers.

1.6. PUBLICATIONS RELATED TO THIS THESIS 11

1.6 Publications Related to This Thesis

The results in this thesis are based on the following papers:

• Chapter 2 is based on the publication [161]:

K. Zhou, A. M.-C. So, and J. Cheng. Boosting First-Order Methods by Shift-
ing Objective: New Schemes with Faster Worst-Case Rates. In Advances in
Neural Information Processing Systems (NIPS/NeurIPS), pages 15405-15416,
2020.

• Chapter 3 is based on the publication [163]:

K. Zhou, L. Tian, A. M.-C. So, and J. Cheng. Practical Schemes for Finding
Near-Stationary Points of Convex Finite-Sums. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 3684-3708, 2022.

• Chapter 4 is based on the workshop paper [162]:

K. Zhou, A. M.-C. So, and J. Cheng. Accelerating Perturbed Stochastic
Iterates in Asynchronous Lock-Free Optimization. In NeurIPS Workshop on
Optimization for Machine Learning (NeurIPS OPT), 2022.

• Chapter 5 is based on the publication [160]:

K. Zhou, Y. Jin, Q. Ding, and J. Cheng. Amortized Nesterov’s Momentum:
A Robust Momentum and Its Application to Deep Learning. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 211-220, 2020.

• Chapter 6 is based on my contribution in the work [146]:

L. Tian, K. Zhou, and A. M.-C. So. On the Finite-Time Complexity and Prac-
tical Computation of Approximate Stationarity Concepts of Lipschitz Func-
tions. In International Conference on Machine Learning (ICML), pages 21360-
21379, 2022.

Chapter 2

Even Faster First-Order Methods
for Strongly Convex Problems

In this chapter, we focus on the following smooth strongly convex finite-sum problem:

x⋆ = argmin
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
, (2.1)

where each fi is L-smooth and µ-strongly convex.1

2.1 The Shifting Methodology

We tackle problem (2.1) from a new angle: Instead of designing methods to solve
the original objective function f , we propose methods that are designed to solve a
shifted objective h:

min
x∈Rd

h(x) =
1

n

n∑
i=1

hi(x),

where hi(x) = fi(x)− fi(x⋆)− ⟨∇fi(x⋆), x− x⋆⟩ −
µ

2
∥x− x⋆∥2 .

It can be easily verified that each hi(x) is (L − µ)-smooth and convex, ∇hi(x) =
∇fi(x)−∇fi(x⋆)− µ(x− x⋆), ∇h(x) = ∇f(x)− µ(x− x⋆), hi(x⋆) = h(x⋆) = 0 and

1If each fi(·) is L-smooth, the averaged function f(·) is itself L-smooth — but typically with a
smaller L. We keep L as the smoothness constant for consistency.

12

2.1. THE SHIFTING METHODOLOGY 13

∇hi(x⋆) = ∇h(x⋆) = 0, which means that the shifted problem and problem (2.1)
share the same optimal solution x⋆. Let us write a well-known property of h:

∀x, y ∈ Rd, h(x)− h(y)− ⟨∇h(y), x− y⟩ ≥ 1

2(L− µ)
∥∇h(x)−∇h(y)∥2 , (2.2)

which encodes both the smoothness and strong convexity of f . The discrete version
of this inequality is equivalent to the smooth strongly convex interpolation condition
discovered in Taylor et al. [145]. Similar to the discussion in the introduction, this
type of inequality forms a necessary and sufficient condition for the existence of a
smooth strongly convex f interpolating a given set of triples {(xi,∇fi, fi)}, while the
usual collection of L-smoothness and strong convexity inequalities is only a necessary
condition.2 From the perspective of the PEP formulation [37], it implies that tighter
results can be derived by exploiting condition (2.2) than using smoothness and strong
convexity “separately”, which is common in existing worst-case analysis. We show
that our methodology effectively exploits this condition and consequently, we derive
several methods that achieve faster worst-case convergence rates than their existing
counterparts.

In summary, our methodology and proposed methods have the following distinc-
tive features:

• We show that our methodology works for problems equipped with various first-
order oracles: deterministic gradient oracle, incremental gradient oracle and
incremental proximal point oracle.

• We leverage a cleaner version of the interpolation condition discovered in Taylor
et al. [145], which leads to simpler and tighter analysis to the proposed methods
than their existing counterparts.

• For our proposed stochastic methods, we deal with shifted variance bounds /
shifted stochastic gradient norm bounds, which are different from all previous
works.

• All the proposed methods achieve faster worst-case convergence rates than their
counterparts (roughly by a factor of 2) that were designed to solve the original
objective f .

2It implies that those inequalities may allow a non-smooth f interpolating the set, and thus a
worst-case rate built upon those inequalities may not be achieved by any smooth f (i.e., the rate
is loose). See Taylor et al. [145] for details.

14 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

Our development is motivated by the PEP methodology [37] and a recently pro-
posed robust momentum method [24], which converges under a Lyapunov function
(also known as the potential function [10]) that contains a term

h(x)− 1

2(L− µ)
∥∇h(x)∥2 .

This chapter conducts a comprehensive study of the special structure of this term.
This chapter is organized as follows: In Section 2.2, we present high-level ideas

and lemmas that are the core building blocks of our methodology. In Section 2.3,
we propose an accelerated method for the n = 1 case. In Section 2.4, we propose
accelerated stochastic variance-reduced methods for the n ≥ 1 case with incremental
gradient oracle. In Section 2.5, we propose an accelerated method for the n ≥ 1 case
with incremental proximal point oracle. In Section 2.6, we provide experiments.

Oracle Definitions. Given a point x ∈ Rd, an index i ∈ [n] and α > 0, we define
various oracles as follows:

• Deterministic oracle returns
(
f(x),∇f(x)

)
.

• Incremental first-order oracle returns
(
fi(x),∇fi(x)

)
.

• Incremental proximal point oracle returns
(
fi(x),∇fi(x), proxαi (x)

)
, where the

proximal operator is defined as

proxαi (z) = argmin
x

{
fi(x) +

α

2
∥x− z∥2

}
.

We denote ϵ > 0 as the required accuracy for solving problem (2.1) (i.e., to achieve
∥x− x⋆∥2 ≤ ϵ), which is assumed to be small.

2.2 Tackling the Shifted Objective

As mentioned in the beginning of this chapter, our methodology is to minimize the
shifted objective3 h with the aim of exploiting the interpolation condition. However,
a critical issue is that we cannot even compute its gradient ∇h(x) (or ∇hi(x)), which
requires the knowledge of x⋆. We figured out that in some simple cases, a change

3In the Lyapunov analysis framework, this is equivalent to picking a family of Lyapunov function
that only involves the shifted objective h (instead of f). See Bansal and Gupta [10] for a nice review
of Lyapunov-function-based proofs.

2.2. TACKLING THE SHIFTED OBJECTIVE 15

of “perspective” is enough to access this gradient information. Take GD xk+1 =
xk−η∇f(xk) as an example. Based on the definition ∇h(xk) = ∇f(xk)−µ(xk−x⋆),
we can rewrite the GD update as xk+1−x⋆ = (1− ηµ)(xk−x⋆)− η∇h(xk), and thus

∥xk+1 − x⋆∥2 = (1− ηµ)2 ∥xk − x⋆∥2−2η(1− ηµ) ⟨∇h(xk), xk − x⋆⟩+ η2 ∥∇h(xk)∥2︸ ︷︷ ︸
R0

.

If we set η = 2
L+µ

, using the interpolation condition (2.2), we can conclude that
R0 ≤ 0, which leads to a convergence guarantee. It turns out that this argument is
just the one-line proof of GD in the textbook (Theorem 2.1.15, [109]) but looks more
structured in our opinion. However, this change of “perspective” is too abstract for
more complicated schemes. Our solution is to first fix a template updating rule, and
then encode this idea into a technical lemma, which serves as an instantiation of
the shifted gradient oracle. To facilitate its usage, we formulate this lemma with a
classic inequality whose usage has been well-studied. Proofs in this section are given
in Appendix A.1.

Lemma 1 (Shifted mirror descent lemma). Given a gradient estimator Gy, vec-

tors z+, z−, y ∈ Rd, fix the updating rule z+ = argminx
{
⟨Gy, x⟩ + α

2
∥x− z−∥2 +

µ
2
∥x− y∥2

}
. Suppose that we have a shifted gradient estimator Hy satisfying the

relation Hy = Gy − µ(y − x⋆), it holds that

〈
Hy, z

− − x⋆
〉
=
α

2

(∥∥z− − x⋆∥∥2 − (1 + µ

α

)2 ∥∥z+ − x⋆∥∥2)+
1

2α
∥Hy∥2 .

Remark 1. In general convex optimization, a similar lemma (for G) serves as the
core lemma for mirror descent4 (e.g., Theorem 5.3.1 in the textbook [14]). This
type of lemma also appears frequently in online optimization, which is used as an
upper bound on the regret at the current iteration (e.g., Lemma 3 in Shalev-Shwartz
and Singer [135]). In the strongly convex setting, unlike the common (1 + µ

α
)−1 (or

1− µ
α
) contraction ratio in existing work (e.g., Lemma 2.5 in Allen-Zhu [4]), Lemma

1 provides a (1+ µ
α
)−2 ratio, which is one of the keys to the improved worst-case rates

achieved in this chapter.

Lemma 1 allows us to choose various gradient estimators for h directly, given that
the relation Hx = Gx− µ(x− x⋆) holds for some practical Gx. Here we provide some
examples:

4In the Euclidean case, mirror descent coincides with GD. It represents a different approach to
the same method.

16 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

• Deterministic gradient:

HGD
x = ∇h(x)⇒ GGD

x = ∇f(x).

• SVRG estimator [64]:

HSVRG
x = ∇hi(x)−∇hi(x̃) +∇h(x̃)

⇒ GSVRG
x = ∇fi(x)−∇fi(x̃) +∇f(x̃).

• SAGA estimator [29]:

HSAGA
x = ∇hi(x)−∇hi(ϕi) +

1

n

n∑
j=1

∇hj(ϕj)

⇒ GSAGA
x = ∇fi(x)−∇fi(ϕi) +

1

n

n∑
j=1

∇fj(ϕj)− µ
(1
n

n∑
j=1

ϕj − ϕi
)
.

• SARAH estimator [111]:

HSARAH
xk

= ∇hik(xk)−∇hik(xk−1) +HSARAH
xk−1

and HSARAH
x0

= ∇h(x0)
⇒ GSARAH

xk
= ∇fik(xk)−∇fik(xk−1) + GSARAH

xk−1
and GSARAH

x0
= ∇f(x0).

It can be verified that the relation Hx = Gx − µ(x− x⋆) holds in all these examples.
Note that it is important to ensure that Gx is practical. For example, the shifted
stochastic gradient estimator ∇hi(x) = [∇fi(x) − ∇fi(x⋆)] − µ(x − x⋆) does not
induce a practical Gx.

We also apply the idea of changing “perspective” to proximal operator proxαi as
given below.

Lemma 2 (Shifted firm non-expansiveness). Given relations z+ = proxαi (z
−) and

y+ = proxαi (y
−), it holds that

1

α2

(
1 +

2(α + µ)

L− µ

)∥∥∇hi(z+)−∇hi(y+)∥∥2 + (1 + µ

α

)2 ∥∥z+ − y+∥∥2 ≤ ∥∥z− − y−∥∥2 .
Remark 2. Recall the definition of a firmly non-expansive operator T (e.g., Def-
inition 4.1 in the textbook [11]): ∀x, y, ∥Tx− Ty∥2 + ∥(Id− T)x− (Id− T)y∥2 ≤

2.3. DETERMINISTIC OBJECTIVES 17

∥x− y∥2 . Lemma 2 can be derived by choosing5 T = (1 + µ
α
) · proxαi and strength-

ening ⟨Tx− Ty, (Id− T)x− (Id− T)y⟩ ≥ 0 using the interpolation condition. A
similar lemma has also been used in the analysis of the proximal point algorithm
[127]. In the problem setting of this chapter, Defazio [27] also strengthened firm
non-expansiveness, which produces a (1+ µ

α
)−1 contraction ratio instead of the above

(1 + µ
α
)−2 ratio created by shifting objective.

Now we have all the building blocks to migrate existing schemes to tackle the
shifted objective. To maximize the potential of our methodology, we focus on de-
veloping accelerated methods. We can also tighten the analysis of non-accelerated
methods, which could lead to new algorithmic schemes.

2.3 Deterministic Objectives

We consider the objective function (2.1) with n = 1. To begin, we recap the guar-
antee of NAG to facilitate the comparison. The proof is given in Appendix A.6 for
completeness. At iteration K − 1, NAG produces

f(xK)− f(x⋆) +
µ

2
∥zK − x⋆∥2 ≤

(
1− 1√

κ

)K (
f(x0)− f(x⋆) +

µ

2
∥z0 − x⋆∥2

)
,

where x0, z0 ∈ Rd are the initial guesses. Denote the initial constant as CNAG
0 ≜

f(x0) − f(x⋆) + µ
2
∥z0 − x⋆∥2. This guarantee shows that in terms of reducing

∥x− x⋆∥2 to ϵ, the sequences {xk} (due to f(xK) − f(x⋆) ≥ µ
2
∥xK − x⋆∥2) and

{zk} have the same iteration complexity
√
κ log

2CNAG
0

µϵ
.

2.3.1 Generalized Triple Momentum Method

We present the first application of our methodology in Algorithm 1, which can be
regarded as a technical migration6 of NAG to the shifted objective. It turns out that
Algorithm 1, when tuned optimally, is equivalent to TM [134] (except for the first
iteration). We thus name it as Generalized Triple Momentum method (G-TM). In
comparison with TM, G-TM has the following advantages:

5In the strongly convex setting, (1 + µ
α) · prox

α
i is firmly non-expansive (e.g., Proposition 1 in

Defazio [27]).
6In our opinion, the most important techniques in NAG are Lemma 3 for f and the mirror

descent lemma. Algorithm 1 was derived by having a shifted version of Lemma 3 for h and the
shifted mirror descent lemma.

18 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

Algorithm 1 Generalized Triple Momentum (G-TM)

Input: {αk > 0}, {τxk ∈]0, 1[}, {τ zk > 0}, initial guesses y−1, z0 ∈ Rd and iteration
number K.

1: for k = 0, . . . , K − 1 do
2: yk = τxk zk + (1− τxk)yk−1 + τ zk

(
µ(yk−1 − zk)−∇f(yk−1)

)
.

3: zk+1 = argminx

{
⟨∇f(yk), x⟩+ (αk/2) ∥x− zk∥2 + (µ/2) ∥x− yk∥2

}
.

4: end for
Output: zK .

• Refined convergence guarantee. TM has the guarantee (Eq.(11) in Cyrus et al. [24]
with ρ = 1− 1√

κ
):

∥zK − x⋆∥2

≤
(
1− 1√

κ

)2(K−1)(
∥z1 − x⋆∥2 +

L− µ
Lµ

(
h(y0)−

1

2(L− µ)
∥∇h(y0)∥2

))
,

which has an initial state issue: its initial constant correlates with z1, which is
not an initial guess. It can be verified that the first iteration of TM is GD with a

1√
Lµ

stepsize, which exceeds the 2
L+µ

limit, and thus we do not have ∥z1 − x⋆∥2 ≤
∥z0 − x⋆∥2 in general. This issue is possibly the reason for the log

√
κ factor stated

in Scoy et al. [134]. G-TM resolves this issue and removes the log factor.

• More extensible proof. Our proof of G-TM is based on Lemma 1, which, as men-
tioned in Section 2.2, allows shifted stochastic gradients. In comparison, the anal-
ysis of TM starts with establishing an algebraic identity and it is unknown whether
this identity holds in the stochastic case.

• General scheme. The framework of G-TM covers both NAG and TM. See Ap-
pendix A.2.1 for detailed derivations. When µ = 0, it also covers the optimized
gradient method [68], which is discussed in Section 2.7.

A subtlety of Algorithm 1 is that it requires storing a past gradient vector, and
thus at the first iteration, two gradient computations are needed. The analysis of
G-TM is based on the same Lyapunov function in Cyrus et al. [24]:

Tk = h(yk−1)−
1

2(L− µ)
∥∇h(yk−1)∥2 +

λ

2
∥zk − x⋆∥2 , where λ > 0.

In the following theorem, we establish the per-iteration contraction of G-TM and the
proof is given in Appendix A.2.2.

2.3. DETERMINISTIC OBJECTIVES 19

Theorem 1. In Algorithm 1, if we fix τ zk =
1−τxk
L−µ ,∀k and choose {αk}, {τxk } under

the constraints

2αk ≥ Lτxk − µ and

(
1 +

µ

αk

)2

(1− τxk) ≤ 1,

the iterations satisfy the contraction Tk+1 ≤ (1 + µ
αk
)−2Tk with λ =

(τxk−µτ
z
k)(αk+µ)

2

αk
.

When the constraints hold as equality, we derive a simple constant choice for
G-TM: α =

√
Lµ− µ, τx = 2

√
κ−1
κ

, τz =
√
κ−1

L(
√
κ+1)

. Here we also provide the parameter

choices of NAG and TM under the framework of G-TM for comparison. Detailed
derivation is given in Appendix A.2.1.

NAG


α =
√
Lµ− µ;

τxk = (
√
κ+ 1)−1, τ zk = 0, k = 0;

τxk = (
√
κ)−1, τ zk = 1

L+
√
Lµ
, k ≥ 1.

TM


α =
√
Lµ− µ;

τxk = (
√
κ+ 1)−1, τ zk = 0, k = 0;

τxk = 2
√
κ−1
κ

, τ zk =
√
κ−1

L(
√
κ+1)

, k ≥ 1.

Using the constant choice in Theorem 1, by telescoping the contraction from iteration
K − 1 to 0, we obtain

µ

2
∥zK − x⋆∥2

≤
(
1− 1√

κ

)2K (
κ− 1

2κ

(
h(y−1)−

1

2(L− µ)
∥∇h(y−1)∥2

)
+
µ

2
∥z0 − x⋆∥2

)
.

(2.3)

Denoting the initial constant as

CG-TM
0 ≜

κ− 1

2κ
(h(y−1)−

1

2(L− µ)
∥∇h(y−1)∥2) +

µ

2
∥z0 − x⋆∥2 ,

if we align the initial guesses y−1 = x0 with NAG, we have CG-TM
0 ≪ CNAG

0 . This

guarantee yields a
√
κ
2
log

2CG-TM
0

µϵ
iteration complexity for G-TM, which is at least two

times lower than that of NAG and does not suffer from an additional log
√
κ factor

as is the case for the original TM.

The Tightness of (2.3)

It is natural to ask how tight the worst-case guarantee (2.3) is. We show that for
the quadratic7 f(x) = 1

2
⟨Dκx, x⟩ where Dκ ≜ diag(L, µ) is a diagonal matrix, G-

TM converges exactly at the rate in (2.3). Note that for this objective, h(x) −
7This is also the example where GD with 2

L+µ stepsize behaves exactly like its worst-case analysis.

20 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

1
2(L−µ) ∥∇h(x)∥

2 ≡ 0, which means that the guarantee becomes

∥zK − x⋆∥2 ≤
(
1− 1√

κ

)2K

∥z0 − x⋆∥2 .

Expanding the recursions in Algorithm 1, we obtain the following result and its proof
is given in Appendix A.2.3.

Proposition 1.1. If f(x) = 1
2
⟨Dκx, x⟩, G-TM produces

∥zK − x⋆∥2 =
(
1− 1√

κ

)2K

∥z0 − x⋆∥2 .

2.4 Finite-Sum Objectives with Incremental First-

Order Oracle

We now consider the finite-sum objective (2.1) with n ≥ 1. We choose SVRG [64] as
the base algorithm to implement our boosting technique, and we also show that an
accelerated SAGA [29] variant can be similarly constructed in Section 2.4.2. Proofs
in this section are given in Appendix A.3.

2.4.1 BS-SVRG

As mentioned in Section 2.2, the shifted SVRG estimator HSVRG
x induces a practical

GSVRG
x (which is just the original SVRG estimator [64]) and thus by using Lemma 1,

we obtain a practical updating rule and a classic equality for the shifted estimator.
Now we can design an accelerated SVRG variant that minimizes h. To make the no-
tations specific, we define GSVRG

xk
≜ ∇fik(xk)−∇fik(x̃s)+∇f(x̃s), where ik is sampled

uniformly in [n] and x̃s is a previously chosen random anchor point. For simplicity,
in what follows, we only consider constant parameter choices. We name our SVRG
variant as BS-SVRG (Algorithm 2), which is designed based on the following thought
experiment.

Thought experiment. We design BS-SVRG by extending G-TM, which is natural
since almost all the existing stochastic accelerated methods are constructed based on
NAG. For SVRG, its (directly) accelerated variants [4, 158, 81] all incorporate the
idea of “negative” momentum, which is basically Nesterov’s momentum provided by
the anchor point x̃s instead of the previous iterate. Inspired by their success, we

2.4. INCREMENTAL FIRST-ORDER ORACLE 21

Algorithm 2 SVRG Boosted by Shifting objective (BS-SVRG)

Input: Parameters α > 0, τx ∈]0, 1[, initial guess x0 ∈ Rd, epoch number S and
epoch length m.

Initialize: Vectors z00 = x̃0 = x0, constants τz =
τx
µ
− α(1−τx)

µ(L−µ) , ω̃ =
∑m−1

k=0

(
1 + µ

α

)2k
.

1: for s = 0, . . . , S − 1 do
2: Compute and store ∇f(x̃s).
3: for k = 0, . . . ,m− 1 do
4: ysk = τxz

s
k + (1− τx) x̃s + τz (µ(x̃s − zsk)−∇f(x̃s)).

5: zsk+1 = argminx

{〈
GSVRG
ysk

, x
〉
+ (α/2) ∥x− zsk∥

2 + (µ/2) ∥x− ysk∥
2
}
.

6: end for
7: x̃s+1 is sampled from

{
P (x̃s+1 = ysk) =

1
ω̃

(
1 + µ

α

)2k ∣∣∣ k ∈ {0, . . . ,m− 1}
}
.

8: zs+1
0 = zsm.

9: end for
Output: zS0 .

design the “momentum step” of BS-SVRG (Step 4) by replacing all the previous
iterate yk−1 in yk = τxzk + (1 − τx)yk−1 + τz

(
µ(yk−1 − zk) − ∇f(yk−1)

)
with the

anchor point x̃s. The insight is that the “momentum step” is aggressive and could
be erroneous in the stochastic case. Thus, we construct it based on some “stable”
point instead of the previous stochastic iterate.

We adopt a similar Lyapunov function as G-TM:

Ts ≜ h(x̃s)− c1 ∥∇h(x̃s)∥2 +
λ

2
∥zs0 − x⋆∥

2 , where c1 ∈
[
0,

1

2(L− µ)

]
and λ > 0,

and build the per-epoch contraction of BS-SVRG as follows.

Theorem 2. In Algorithm 2, if we choose α, τx under the constraints(
1 +

µ

α

)2m
(1− τx) ≤ 1 and (1 + τx)

2(1− τx) ≥ 4

((
α

µ
+ 1

)
−
(
α

µ
+ κ

)
τx

)2

,

the per-epoch contraction E
[
Ts+1

]
≤ (1 + µ

α
)−2mTs holds with λ = α2(1−τx)

ω̃(L−µ) (1 +
µ
α
)2m.

The expectation is taken with respect to the information up to epoch s.

In what follows, we provide a simple analytic choice that satisfies the constraints.
We consider the ill-conditioned case where m

κ
≤ 3

4
, and we fix m = 2n to make it

22 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

specific.8 In this case, Allen-Zhu [4] derived an O(
√
6nκ log 1

ϵ
) expected iteration

complexity9 for Katyusha (cf. Theorem 2.1, [4]).

Proposition 2.1 (Ill condition). If m
κ
≤ 3

4
, the choice α =

√
cmµL − µ, τx =

(1− 1
cκ
)

√
cmκ√

cmκ+κ−1
, where c = 2 +

√
3, satisfies the constraints in Theorem 2.

Using this parameter choice in Theorem 2, we obtain an O(
√
1.87nκ log 1

ϵ
) ex-

pected iteration complexity for BS-SVRG, which is around 1.8 times lower than that
of Katyusha.

Remark 2.1. We are not aware of other parameter choices of Katyusha that have
faster rates. Hu et al. [58] made an attempt based on dissipativity theory, but no
explicit rate is given. To derive a better choice for Katyusha, significant modification
to its proof is required (for its parameter τ2), which results in complicated constraints
and is thus out of the scope of this chapter. We believe that there could be some
computer-aided ways to find better choices for both Katyusha and BS-SVRG, which
we leave for future work.

For the other case where m
κ
> 3

4
(i.e., κ = O(n)), almost all the accelerated and

non-accelerated incremental gradient methods perform the same, at an O(n log 1
ϵ
)

oracle complexity (and is indeed fast). Hannah et al. [52] shows that by optimizing
the parameters of SVRG and SARAH, a lower O(n + n

1+max {log (n/κ),0} log
1
ϵ
) oracle

complexity is achievable. Due to these facts, we do not optimize the parameters for
this case and provide the following proposition as a basic guarantee.

Proposition 2.2 (Well condition). If m
κ
> 3

4
, by choosing α = 3L

2
− µ, τx = (1 −

1
6m

) 3κ
5κ−2

, the epochs of BS-SVRG satisfy Ts+1 ≤ 1
2
· Ts with λ = 2α2(1−τx)

ω̃(L−µ) , which

implies an O(n log 1
ϵ
) expected iteration complexity.

There exists a special choice in the constraints: by choosing τx =
α+µ
α+L

, the second
constraint always holds and this leads to c1 = 0 in Ts. In this case, α can be found
using numerical tools, which is summarized as follows.

Proposition 2.3 (Numerical choice). By fixing τx = α+µ
α+L

, the optimal choice of α

can be found by solving the equation
(
1 + µ

α

)2m (
1− α+µ

α+L

)
= 1 using numerical tools,

and this equation has a unique positive root.

8We choose the setting that is used in the analysis and experiments of Katyusha [4] to make a
fair comparison.

9We are referring to the expected number of stochastic iterations (e.g., in total Sm in Algorithm

2) required to achieve ∥x− x⋆∥2 ≤ ϵ. If m = 2n, in average, each stochastic iteration of SVRG
requires 1.5 oracle calls.

2.5. INCREMENTAL PROXIMAL POINT ORACLE 23

Compared with Katyusha, BS-SVRG has a simpler scheme, which only requires
storing one variable vector {zk} and tuning 2 parameters similar to MiG [158]. More-
over, BS-SVRG achieves the fastest rate among the accelerated SVRG variants.

2.4.2 Accelerated SAGA Variant

As given in Section 2.2, the shifted SAGA estimator HSAGA
x also induces a practical

gradient estimator, and thus we can design an accelerated SAGA variant in a similar
way. Inspired by the existing (directly) accelerated SAGA variant [159], we can
design the recursion (updating rule of the table) as ϕk+1

ik
= τxzk + (1− τx)ϕkik +

τz
(
µ(1

n

∑n
i=1 ϕ

k
i − zk)− 1

n

∑n
i=1∇fi(ϕki)

)
. We found that for the resulting scheme, we

can adopt the following Lyapunov function:

Tk =
1

n

n∑
i=1

hi(ϕ
k
i)− c1

∥∥∥∥∥ 1n
n∑
i=1

∇hi(ϕki)

∥∥∥∥∥
2

+
λ

2
∥zk − x⋆∥2 ,

where c1 ∈
[
0,

1

2(L− µ)

]
, λ > 0,

which is an “incremental version” of Ts. Note that

1

n

n∑
i=1

hi(ϕ
k
i)− c1

∥∥∥∥∥ 1n
n∑
i=1

∇hi(ϕki)

∥∥∥∥∥
2

≥ 1

n

n∑
i=1

(
hi(ϕ

k
i)− c1

∥∥∇hi(ϕki)∥∥2) ≥ 0.

A similar accelerated rate can be derived for the SAGA variant and its parameter
choice shows some interesting correspondence between the variants of SVRG and
SAGA. Moreover, the resulting scheme does not need the tricky “doubling sampling”
in Zhou et al. [159] and thus it has a lower iteration complexity. However, since its
updating rules require the knowledge of point table, the scheme has an undesirable
O(nd) memory complexity. We provide this variant in Appendix A.3.4 for interested
readers.

2.5 Finite-Sum Objectives with Incremental Prox-

imal Point Oracle

We consider the finite-sum objective (2.1) and assume that the proximal operator
oracle proxαi (·) of each fi is available. Point-SAGA [27] is a typical method that
utilizes this oracle, and it achieves the same O

(
(n +

√
nκ) log 1

ϵ

)
expected iteration

24 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

Algorithm 3 Point-SAGA Boosted by Shifting objective (BS-Point-SAGA)

Input: Parameters α > 0 and initial guess x0 ∈ Rd, iteration number K.
Initialize: A point table ϕ0 ∈ Rd×n with ∀i ∈ [n], ϕ0

i = x0, running averages for the
point table and its gradients.

1: for k = 0, . . . , K − 1 do
2: Sample ik uniformly in [n].
3: Update x: zk = xk +

1
α

(
∇fik(ϕkik)−

1
n

∑n
i=1∇fi(ϕki) + µ

(
1
n

∑n
i=1 ϕ

k
i − ϕkik

))
,

4: xk+1 = proxαik(zk).

5: Set ϕk+1
ik

= xk+1 and keep other entries unchanged (i.e., for i ̸= ik, ϕ
k+1
i =

ϕki). Update the running averages according to the change in ϕk+1 (note that
∇fik(ϕk+1

ik
) = α(zk − xk+1)).

6: end for
Output: xK .

complexity. Although in general, the incremental proximal operator oracle is much
more expensive than the incremental gradient oracle, Point-SAGA is interesting in
the following aspects: (1) it has a simple scheme with only 1 parameter; (2) its
analysis is elegant and tight, which does not require any Young’s inequality; (3) for
problems where the proximal point oracle has an analytic solution, it has a very fast
rate (i.e., its rate factor is smaller than 1 − (n +

√
nκ + 1)−1, which is faster than

both Katyusha and BS-SVRG).
It might be surprising that by shifting objective, the convergence rate of Point-

SAGA can be further boosted. We name the proposed variant as BS-Point-SAGA,
which is presented in Algorithm 3. Recall that the Lyapunov function used to analyze
Point-SAGA has the form (cf. Theorem 5, [27]):

TPoint-SAGA
k =

c

n

n∑
i=1

∥∥∇fi(ϕki)−∇fi(x⋆)∥∥2 + ∥xk − x⋆∥2 .
We adopt a shifted version of this Lyapunov function:

Tk = λ · 1
n

n∑
i=1

∥∥∇hi(ϕki)∥∥2 + ∥xk − x⋆∥2 , where λ > 0.

The analysis of BS-Point-SAGA is a direct application of Lemma 2. We build the per-
iteration contraction in the following theorem, and its proof is given in Appendix A.4.

2.6. PERFORMANCE EVALUATIONS 25

Theorem 3. In Algorithm 3, if we choose α as the unique positive root of the cubic
equation

2

(
α

µ

)3

− (4n− 6)

(
α

µ

)2

− (2nκ+ 4n− 6)

(
α

µ

)
− (nκ+ n− 2) = 0,

the per-iteration contraction Eik [Tk+1] ≤ (1+ µ
α
)−2Tk holds with λ = n

α2 +
2(α+µ)(n−1)
α2(L−µ) .

The root of this cubic equation satisfies α
µ
= O(n+

√
nκ), which implies an O

(
(n+

√
nκ) log 1

ϵ

)
expected iteration complexity.

0 2 4 6 8 10

10
4

0.992

0.994

0.996

0.998

Figure 2.1: A comparison
of the expected worst-case
rate factors.

The expected worst-case rate factor of BS-Point-
SAGA is minimized by solving the cubic equation in
Theorem 3 exactly. The analytic solution of this equa-
tion is messy, but it can be easily calculated using nu-
merical tools. In Figure 2.1, we numerically compare
the rate factors of Point-SAGA and BS-Point-SAGA.
When κ is large, the rate factor of BS-Point-SAGA is
close to the square of the rate factor of Point-SAGA,
which implies an almost 2 times lower expected iter-
ation complexity. In terms of memory requirement,
BS-Point-SAGA has an undesirable O(nd) complexity
since the update of xk+1 involves ϕkik . Nevertheless, it
achieves the fastest known rate for finite-sum problems (if both L and µ are known),
and we present it as a special instance of our design methodology.

2.6 Performance Evaluations

In general, a faster worst-case rate does not necessarily imply a better empirical
performance. It is possible that the slower rate is loose or the worst-case analysis
is not representative of reality (e.g., worst-case scenarios are not stable to pertur-
bations). We provide experimental results of the proposed methods in this section.
We evaluate them in the ill-conditioned case where the problem has a huge κ to
justify the accelerated

√
κ dependence. Detailed experimental setup can be found in

Appendix A.5.
We started with evaluating the deterministic methods: NAG, TM and G-TM.

We first did a simulation on the quadratic objective mentioned in Section 2.3.1,
which also serves as a justification of Proposition 1.1. In this simulation, the de-
fault (constant) parameter choices were used and all the methods were initialized

26 CHAPTER 2. EVEN FASTER FIRST-ORDER METHODS

0 200 400 600 800 1000

10
-10

10
0

(a) Simulation.

0 50 100 150 200

10
-10

10
-5

10
0

(b) ijcnn1 dataset.

0 50 100 150

10
-10

10
-5

(c) w8a dataset.

0 100 200 300 400 500 600

10
-10

10
-5

0 100 200 300 400 500 600

10
-10

10
-5

(d) a9a dataset. BS-SVRG outputs z (Left) or x̃ (Right).

0 50 100 150 200 250 300

10
-10

10
-5

(e) covtype dataset.

Figure 2.2: Evaluations. (a) Quadratic, L = 1, µ = 10−3. (b) ℓ2-logistic regression,
µ = 10−3. (c) Ridge regression, µ = 5×10−7. (d) (e) ℓ2-logistic regression, µ = 10−8.

in (−100, 100). We plot their convergences and theoretical guarantees (marked with
“UB”) in Figure 2.2a (the bound for TM is not shown due to the initial state issue).
This simulation shows that after the first iteration, TM and G-TM have the same
rate, and the initial state issue of TM can make it slower than NAG. It also suggests
that the guarantee of NAG is loose.

Then, we measured their performance on real world datasets from LIBSVM [20].
The task we chose is ℓ2-logistic regression. We normalized the datasets and thus
for this problem, L = 0.25 + µ. For real world tasks, we tracked function value
suboptimality, which is easier to compute than ∥x− x⋆∥2 in practice. The result is
given in Figure 2.2b. In the first 30 iterations, TM is slower than G-TM due to the
initial state issue. After that, they are almost identical and are faster than NAG.

We then evaluated BS-SVRG on the same problem, which can fully utilize the
finite-sum structure. We evaluated two parameter choices of BS-SVRG: (1) the ana-
lytic choice in Proposition 2.1 (marked as “BS-SVRG”); (2) the numerical choice in
Proposition 2.3 (marked as“BS-SVRG-N”). We selected SAGA (γ = 1

2(µn+L)
, [29])

and Katyusha (τ2 =
1
2
, τ1 =

√
m
3κ
, α = 1

3τ1L
, [4]) with their default parameter choices

as the baselines. Since SAGA and SVRG-like algorithms have different iteration
complexities, we plot the curve with respect to the number of data passes. The
results are given in Figure 2.2d and 2.2e. In the experiment on a9a dataset (Fig-

2.7. CHAPTER SUMMARY AND DISCUSSION 27

ure 2.2d (Left)), both choices of BS-SVRG perform well after 100 passes. The issue of
their early stage performance can be eased by outputting the anchor point x̃ instead,
as shown in Figure 2.2d (Right).

We also conducted an empirical comparison between BS-Point-SAGA and Point-
SAGA in Figure 2.2c. Their analytic parameter choices were used. We chose ridge
regression as the task since its proximal operator has a closed form solution (see
Appendix A in Defazio [27]). For this objective, after normalizing the dataset, L =
1 + µ. The performance of SAGA is also plotted as a reference.

2.7 Chapter Summary and Discussion

In this chapter, we focused on unconstrained smooth strongly convex problems and
designed new schemes for a shifted objective. Lemma 1 and Lemma 2 are the corner-
stones for the new designs, which serve as instantiations of the shifted gradient oracle.
Following this methodology, we proposed G-TM, BS-SVRG (and BS-SAGA) and BS-
Point-SAGA. The new schemes achieve faster worst-case rates and have tighter and
simpler proofs compared with their existing counterparts. Experiments on machine
learning tasks show some improvement of the proposed methods.

Although provided only for strongly convex problems, our framework of exploiting
the interpolation condition (i.e., Algorithm 1) can also be extended to the non-
strongly convex case (µ = 0). It can be easily verified that Theorem 1 holds with
µ = 0 and thus we can choose a variable-parameter setting that leads to the O(1/K2)
rate. It turns out that Algorithm 1 in this case is equivalent to the optimized
gradient method [68], which is also covered by the second accelerated method (14)
studied in Taylor and Bach [141]. Moreover, the Lyapunov function Tk becomes
ak
(
f(yk−1) − f(x⋆) − 1

2L
∥∇f(yk−1)∥2

)
+ L

4
∥zk − x⋆∥2 for some ak > 0, which is

exactly the one used in Theorem 11, [141].
While the proposed approach boosts the convergence rate, some limitations should

be stressed. First, it requires a prior knowledge of the strong convexity constant µ
since even if it is applied to a non-accelerated method, the parameter choice is always
related to µ. Furthermore, this methodology relies heavily on the interpolation con-
dition, which requires f to be defined everywhere on Rd [35]. This restriction makes
it hardly generalizable to the constrained/proximal setting [108] (for the proximal
case, a possible solution is to assume that the smooth part is defined everywhere on
Rd [12, 70, 144]).

Chapter 3

Practical First-Order Methods for
Finding Near-Stationary Points

In this chapter, we focus on finding the near-stationary points ∥∇f(x)∥ ≤ ϵ of the
following smooth convex finite-sum problem:

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

where each fi is L-smooth and convex. We start with clarifying the motivation of
finding near-stationary points in convex optimization.

3.1 Motivations

Classic convex optimization usually focuses on providing guarantees for minimizing
function value. For this task, the optimal (up to constant factors) NAG [104, 107]
has been known for decades, and there are even methods that can exactly match the
lower complexity bounds [68, 34, 142, 36]. On the other hand, in general non-convex
optimization, near-stationarity is the typical optimality measure, and there has been
a flurry of recent research devoted to this topic [47, 48, 45, 63, 42, 157]. Recently,
there has been growing interest on devising fast schemes for finding near-stationary
points in convex optimization [106, 2, 43, 18, 70, 69, 71, 62, 32, 31, 84]. This line of
research is driven by the following applications and facts.

• Nesterov [106] studied the problem that has a linear constraint:

f(x⋆) = min
x∈Q
{f(x) : Ax = b},

28

3.1. MOTIVATIONS 29

Figure 3.1: Contours of f(x) =
x21+5x22

2
[114] and its squared gradient norm ∥∇f(x)∥2.

where Q is a convex set and f is strongly convex. Assuming that Q and f are
simple, we can focus on the dual problem

ϕ(y⋆) = max
y
{ϕ(y) ≜ min

x∈Q
{f(x) + ⟨y, b− Ax⟩}}.

Clearly, the dual objective −ϕ(y) is smooth convex. Letting xy be the unique
solution to the inner problem, we have ∇ϕ(y) = b− Axy. Note that

f(xy)− f(x⋆) = ϕ(y)− ⟨y,∇ϕ(y)⟩ − ϕ(y⋆) ≤ ∥y∥ ∥∇ϕ(y)∥ .

Thus, in this problem, the quantity ∥∇ϕ(y)∥ serves as a measure of both pri-
mal optimality f(xy)−f(x⋆) and feasibility ∥b−Axy∥, which is better than just
measuring the function value.

• Matrix scaling [129] is a convex problem and its goal is to find near-stationary
points [7, 22].

• Gradient norm is readily available, unlike other optimality measures (f(x)−f(x⋆)
and ∥x− x⋆∥), and is thus usable as a stopping criterion. This fact motivates the
design of several parameter-free algorithms [108, 92, 62], and their guarantees are
established on the gradient norm.

• Designing schemes for minimizing the gradient norm can inspire new non-convex
optimization methods. For example, SARAH [111] was designed for convex finite-
sums with gradient-norm measure, but was later discovered to be the near-optimal
method for non-convex finite-sums [42, 121].

Moreover, function value and gradient norm may have very different geometries
around the minimizer (see Figure 3.1), and minimizing the gradient norm is often
considered to be a harder task than minimizing the function value, because NAG has
the optimal rate for f(x)− f(x⋆) but is only suboptimal for minimizing ∥∇f(x)∥.

30 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

Table 3.1: Finding near-stationary points ∥∇f(x)∥ ≤ ϵ of convex finite-sums.

Algorithm Complexity Remark

I
F
C

GD [71] O(n
ϵ2

)

Regularized NAG* [18] O(n
ϵ

log 1
ϵ
)

OGM-G [71] O(n
ϵ
) O(1

ϵ
+ d) memory, optimal in ϵ

M-OGM-G [Section 3.2.1] O(n
ϵ
) O(d) memory, optimal in ϵ

L2S [88] O(n +
√

n

ϵ2
) Loopless variant of SARAH [111]

Regularized Katyusha* [2] O((n +
√

n
ϵ

) log 1
ϵ
) Requires the knowledge of ∆0

R-Acc-SVRG-G* [Section 3.4] O((n log 1
ϵ

+
√

n
ϵ

) log 1
ϵ
) Without the knowledge of ∆0

I
D
C

GD [106, 141] O(n
ϵ
)

NAG / NAG + GD [69] / [106] O(n

ϵ2/3
)

Regularized NAG* [106, 62] O(n√
ϵ
log 1

ϵ
)

NAG + OGM-G [110] O(n√
ϵ
) O(1√

ϵ
+ d) memory, optimal in ϵ

NAG + M-OGM-G [Section 3.2.1] O(n√
ϵ
) O(d) memory, optimal in ϵ

Katyusha + L2S [Appendix B.5] O(n log 1
ϵ

+
√

n

ϵ2/3
)

Acc-SVRG-G [Section 3.3] O
(
n log 1

ϵ
+ min

{
n2/3

ϵ2/3
,
√

n
ϵ

}) O(n log 1
ϵ

+
√

n
ϵ
) for function at the same

time, simple and elegant

Regularized Katyusha* [2] O((n +
√

n
ϵ
) log 1

ϵ
) Requires the knowledge of R0

R-Acc-SVRG-G* [Section 3.4] O((n log 1
ϵ

+
√

n
ϵ
) log 1

ϵ
) Without the knowledge of R0

∗ Indirect methods (using regularization).

In this chapter, we focus on finding the near-stationary points of convex finite-sum
problems. Since non-strongly convex problem may have multiple solutions, we use
X ⋆ to denote the set of optimal solutions, which is assumed to be nonempty. There
are two different assumptions on the initial point x0, namely, the Initial bounded-
Function Condition (IFC): f(x0) − f(x⋆) ≤ ∆0, and the Initial bounded-Distance
Condition (IDC): ∥x0 − x⋆∥ ≤ R0 for some x⋆ ∈ X ⋆. This subtlety results in
drastically different best achievable rates as studied in [18, 43]. Below we categorize
existing techniques into three classes (relating to Table 3.1).

(i) “IDC + IFC”. Nesterov [106] showed that we can combine the guarantees of
a method minimizing function value under IDC and a method finding near-
stationary points under IFC to produce a faster one for minimizing gradient norm

under IDC. For example, NAG produces f(xK1)−f(x⋆) = O(
LR2

0

K2
1
) [104] and GD

produces ∥∇f(xK2)∥
2 = O

(L(f(x0)−f(x⋆))
K2

)
[71] under IFC. Letting x0 = xK1 and

K = K1 + K2, by balancing the ratio of K1 and K2, we obtain the guarantee

∥∇f(xK)∥2 = O(
L2R2

0

K3) for “NAG + GD” (same for “NAG + OGM-G”). We
point out that we can use this technique to combine the guarantees of Katyusha
[4] and SARAH1 [111]; see Appendix B.5.

1We adopt a loopless variant of SARAH [88], which has a refined analysis for general convex
objectives.

3.1. MOTIVATIONS 31

(ii) Regularization. Nesterov [106] used NAG (the strongly convex variant) to solve
the regularized objective, and showed that it achieves near-optimal complex-
ity (optimal up to log factors). Inspired by this technique, Allen-Zhu [2] pro-
posed recursive regularization for stochastic approximation algorithms, which
also achieves near-optimal complexities [43].

(iii) Direct methods. Due to the lack of insight, existing direct methods are mostly
derived or analyzed with the help of computer-aided tools [70, 69, 141, 71].
The computer-aided approach was pioneered by Drori and Teboulle [37], who
introduced the performance estimation problem (PEP). The only known optimal
method OGM-G [71] was designed based on the PEP approach.

Observe that since f(x)−f(x⋆) ≤ ∥∇f(x)∥ ∥x− x⋆∥, the lower bound for finding
near-stationary points must be of the same order as for minimizing function value
[109]. Thus, under IDC, the lower bound is Ω(n+

√
n
ϵ
) due to [151]. Under IFC, we

can establish an Ω(n+
√
n
ϵ
) lower bound using the techniques in [18, 151]. The main

contributions of this chapter are three new schemes that improve the practicalities
of existing methods, which is summarized below (highlighted in Table 3.1).

• (Section 3.2) We propose a memory-saving variant of OGM-G for the deterministic
case (n = 1), which does not require pre-computed and stored parameters. The
derivation of the new variant is inspired by the numerical solution to a PEP
problem.

• (Section 3.3) We propose a new accelerated SVRG [64, 152] variant that can si-
multaneously achieve fast rates for minimizing both the gradient norm and func-
tion value, that is, O(n log 1

ϵ
+min {n2/3

ϵ2/3
,
√
n
ϵ
}) complexity for gradient norm and

O(n log 1
ϵ
+
√

n
ϵ
) complexity for function value. Other stochastic approaches in

Table 3.1 do not have this property.

• (Section 3.4) We propose an adaptively regularized accelerated SVRG variant,
which does not require the knowledge of R0 or ∆0 and achieves a near-optimal
complexity under IDC or IFC.

We put in extra efforts to make the proposed schemes as simple and elegant as
possible. We believe that the simplicity makes the extensions of the new schemes
easier.

32 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

3.2 OGM-G: “Momentum” Reformulation and a

Memory-Saving Variant

In this section, we focus on the IFC setting, that is, f(x0)− f(x⋆) ≤ ∆0. We use N
to denote the total number of iterations (each computes a full gradient ∇f). Proofs
in this section are given in Appendix B.2. Recall that OGM-G has the following
updates [71]. Let y0 = x0. For k = 0, . . . , N − 1,

yk+1 = xk −
1

L
∇f(xk),

xk+1 = yk+1 +
(θk − 1)(2θk+1 − 1)

θk(2θk − 1)
(yk+1 − yk) +

2θk+1 − 1

2θk − 1
(yk+1 − xk),

(3.1)

where the sequence {θk} is recursively defined:

θN = 1 and

{
θ2k − θk = θ2k+1 k = 1 . . . N − 1,

θ20 − θ0 = 2θ21 otherwise.

OGM-G was discovered from the numerical solution to an SDP problem and its
analysis is to show that the step coefficients in (3.1) specify a feasible solution to
the SDP problem. While this analysis is natural for the PEP approach, it is hard to
understand how each coefficient affects the rate, especially if one wants to generalize
the scheme. Here we provide a simple algebraic analysis for OGM-G.

We start with a reformulation2 of OGM-G in Algorithm 4, which aims to simplify
the proof. We adopt a consistent sequence {θk}: θN = 1 and θ2k − θk = θ2k+1, k =
0 . . . N−1, which only costs a constant factor.3 Interestingly, the reformulated scheme
resembles the heavy-ball momentum method [123]. However, it can be shown that
Algorithm 4 is not covered by the heavy-ball momentum scheme. Defining θ2N+1 =
θ2N − θN = 0, we provide the one-iteration analysis in the following proposition:

Proposition 3.1. In Algorithm 4, the following holds at iteration k ∈ {0, . . . , N−1}.

Ak +Bk+1 + Ck+1 + Ek+1 ≤ Ak+1 +Bk + Ck + Ek − θk+1 ⟨∇f(xk+1), vk+1⟩

+
N∑

i=k+1

θi
Lθkθ2k+1

⟨∇f(xk),∇f(xi)⟩,
(3.2)

2It can be verified that this scheme is equivalent to the original one (3.1) through vk =
1

(2θk−1)θ2
k
(yk − xk).

3The original guarantee of OGM-G can be recovered if we set θ20 − θ0 = 2θ21.

3.2. OGM-G: INSIGHTS AND A VARIANT 33

Algorithm 4 OGM-G: “Momentum” reformulation

Input: initial guess x0 ∈ Rd, total iteration number N .
Initialize: vector v0 = 0, scalars θN = 1 and θ2k − θk = θ2k+1, for k = 0 . . . N − 1.
1: for k = 0, . . . , N − 1 do
2: vk+1 = vk +

1
Lθkθ

2
k+1
∇f(xk).

3: xk+1 = xk − 1
L
∇f(xk)− (2θ3k+1 − θ2k+1)vk+1.

4: end for
Output: xN .

where Ak ≜ 1
θ2k
(f(xN) − f(x⋆) − 1

2L
∥∇f(xN)∥2), Bk ≜ 1

θ2k
(f(xk) − f(x⋆)), Ck ≜

1
2Lθ2k
∥∇f(xk)∥2 and Ek ≜

θ2k+1

θk
⟨∇f(xk), vk⟩.

Remark 3.1.1. A recent work [32] also conducted an algebraic analysis of OGM-
G under a potential function framework. Their potential function decrease can be
directly obtained from Proposition 3.1 by summing up (3.2). By contrast, our “mo-
mentum” vector {vk} naturally merges into the analysis, which significantly simplifies
the analysis. Moreover, it provides a better interpretation on how OGM-G utilizes
the past gradients to achieve acceleration. Lee et al. [84] discovered the potential
function of OGM-G while their analysis is much more complicated.

From (3.2), we see that only the last two terms do not telescope. Note that the
“momentum” vector is a weighted sum of past gradients, vk+1 =

∑k
i=0

1
Lθiθ2i+1

∇f(xi).
If we sum the terms up from k = 0, . . . , N−1, it can be verified that they exactly sum
up to 0. Then, by telescoping the remaining terms, we obtain the final guarantee.

Theorem 4. The output of Algorithm 4 satisfies ∥∇f(xN)∥2 ≤ 8L∆0

(N+2)2
.

We observe two drawbacks of OGM-G (which have been similarly pointed out
in [32, 84]): (1) it requires storing a pre-computed parameter sequence, which costs
O(1

ϵ
) floats; (2) except for the last iterate, all other iterates do not have properly

upper-bounded gradient norms. We resolve these issues by proposing another pa-
rameterization of Algorithm 4 in the next subsection.

3.2.1 Memory-Saving OGM-G

A straightforward idea to resolve the aforementioned issues is to generalize Algorithm
4. However, we find it rather difficult since the parameters in the analysis are rather

34 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

Algorithm 5 M-OGM-G: Memory-saving OGM-G

Input: initial guess x0 ∈ Rd, total iteration number N .
Initialize: vector v0 = 0.
1: for k = 0, . . . , N − 1 do
2: vk+1 = vk +

12
L(N−k+1)(N−k+2)(N−k+3)

∇f(xk).
3: xk+1 = xk − 1

L
∇f(xk)− (N−k)(N−k+1)(N−k+2)

6
vk+1.

4: end for
Output: xN or argminx∈{x0,...,xN} ∥∇f(x)∥.

strict (despite that the proof is already simple). We choose to rely on computer-
aided techniques [37]. The derivation of this variant (Algorithm 5) is based on the
following numerical experiment.

Numerical Experiment. OGM-G was discovered from the relaxed PEP [71]:

max
∇f(x0),...,∇f(xN)∈Rd

f(x0),...,f(xN),f(x⋆)∈R

∥∇f(xN)∥2

subject to


interpolation condition (1.2) at (xk, xk+1), k = 0, . . . , N − 1,

interpolation condition (1.2) at (xN , xk), k = 0, . . . , N − 1,

interpolation condition (1.2) at (xN , x
⋆), f(x0)− f(x⋆) ≤ ∆0,

(P)

where the sequence {xk} is defined as xk+1 = xk− 1
L

∑k
i=0 hk+1,i∇f(xi), k = 0, . . . , N−

1 for some step coefficients h ∈ RN(N+1)/2. Given N , the step coefficients of OGM-G
correspond to a numerical solution to the problem: argminh{Lagrangian dual of (P)},
which is denoted as (HD). Conceptually, solving problem (HD) would give us the
fastest possible step coefficients under the constraints.4 We expect there to be some
constant-time slower schemes, which are neglected when solving (HD). To identify
them, we relax a set of interpolation conditions in problem (P):

f(xN)− f(xk)− ⟨∇f(xk), xN − xk⟩ ≥
1

2L
∥∇f(xN)−∇f(xk)∥2 − ρ ∥∇f(xk)∥2 ,

for k = 0, . . . , N−1 and some ρ > 0. After this relaxation, solving (HD) will no longer
give us the step coefficients of OGM-G. Moreover, the subtracted term ρ ∥∇f(xk)∥2
forces the PEP tool to not “utilize” it (to cancel out other terms) when searching for

4However, since problem (HD) is non-convex, we can only obtain local solutions.

3.3. SIMPLE ACCELERATED SVRG 35

step coefficients. Since such a term is not “utilized” in each of the N interpolation
conditions, after summation, these terms appear on the left hand side of (3.3), which
gives upper bounds to the gradient norms evaluated at intermediate iterates. By
trying different ρ and checking the dependence on N , we discover Algorithm 5 when
ρ = 1

2L
. Similar to our analysis of OGM-G, we provide a simple algebraic analysis in

the following theorem.

Theorem 5. Define δk+1≜ 12
(N−k+1)(N−k+2)(N−k+3)

, k = 0, . . . , N . In Algorithm 5, it
holds that

N∑
k=0

δk+1

2
∥∇f(xk)∥2 ≤

12L∆0

(N + 2)(N + 3)
. (3.3)

Remark 5.1. From (3.3), we can directly conclude that ∀k ∈ {0, . . . , N}, ∥∇f(xk)∥2=
O(L∆0

N2δk+1
) and thus, the rate (in terms of N) on the last iterate is optimal (since

δN+1 = 2). Moreover, the minimum gradient also achieves the optimal rate since

min
k∈{0,...,N}

∥∇f(xk)∥2 ≤
1∑N

k=0
δk+1

2

N∑
k=0

δk+1

2
∥∇f(xk)∥2 ≤

8L∆0

(N + 2)(N + 3)− 2
.

Clearly, the parameters of this variant can be computed on the fly and from the
above remark, each iterate has an upper-bounded gradient norm. The constructions
in [32, 84] all require pre-computed and stored sequences, which seems to be unavoid-
able in their analysis as admitted in [32]. Our discovery is another example of the
powerfulness of computer-aided methodology, which finds proofs that are difficult or
even impossible to find with bare hands. We can extend the benefits into the IDC
setting using the ideas in [106] as summarized below.

Corollary 5.1 (IDC case). If we first run N/2 iterations of NAG and then continue

with N/2 iterations of Algorithm 5, the output satisfies ∥∇f(xN)∥2 = O
(L2R2

0

N4

)
.

3.3 Accelerated SVRG: Fast Rates for Both Gra-

dient Norm and Objective

In this section, we focus on the IDC setting, that is, ∥x0 − x⋆∥ ≤ R0 for some
x⋆ ∈ X ⋆. We use K to denote the total number of stochastic iterations. From
the development in Section 3.2, it is natural to ask whether we can use the PEP
approach to motivate new stochastic schemes. However, due to the exponential
growth of the number of possible states (i0, i1, . . .), we cannot directly adopt this

36 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

Algorithm 6 Acc-SVRG-G: Accelerated SVRG for Gradient minimization

Input: parameters {τk}, {pk}, initial guess x0 ∈ Rd, total iteration number K.
Initialize: vectors z0 = x̃0 = x0 and scalars αk =

Lτk
1−τk

,∀k and τ̃ =
∑K−1

k=0 τ
−2
k .

1: for k = 0, . . . , K − 1 do
2: yk = τkzk + (1− τk)

(
x̃k − 1

L
∇f(x̃k)

)
.

3: zk+1 = argminx
{
⟨Gk, x⟩+ (αk/2) ∥x− zk∥2

}
.

4: //Gk ≜ ∇fik(yk)−∇fik(x̃k) +∇f(x̃k), where ik is sampled uniformly in [n].

5: x̃k+1 =

{
yk with probability pk,

x̃k with probability 1− pk.
6: end for

Output (for gradient): xout is sampled from{
Prob{xout = x̃k} =

τ−2
k

τ̃

∣∣∣∣ k ∈ {0, . . . , K − 1}
}
.

Output (for function value): x̃K .

approach. A feasible alternative is to first fix an algorithmic framework and a family
of potential functions, and then use the potential-based PEP approach in [141].
However, this approach is much more restrictive. For example, it cannot identify
special constructions like (3.2) in OGM-G. Fortunately, as we will see, we can get
some inspiration from the recent development of deterministic methods. Proofs in
this section are given in Appendix B.3.

Our proposed scheme is given in Algorithm 6. We adopt the elegant loopless
design of SVRG in [75]. Note that the full gradient ∇f(x̃k) is computed and stored
only when x̃k+1 = yk at Step 5. We summarize our main technical novelty as follows.

Main Algorithmic Novelty. The design of stochastic accelerated methods is
largely inspired by NAG. To make it clear, by setting n = 1, we see that Katyusha
[4], MiG [158], SSNM [159], Varag [81], VRADA [138], ANITA [89], the acceleration
framework in [33] and AC-SA [78, 46, 160] all reduce to one of the following variants
of NAG [9, 5]. We say that these methods are under the NAG framework.

xk = τkzk + (1− τk)yk,
zk+1 = zk − αk∇f(xk),
yk+1 = τkzk+1 + (1− τk)yk.


xk = τkzk + (1− τk)yk,
zk+1 = zk − αk∇f(xk),
yk+1 = xk − ηk∇f(xk).

Auslender and Teboulle [9] Linear Coupling [5]

3.3. SIMPLE ACCELERATED SVRG 37

See [148, 28] for other variants of NAG. When n = 1, Algorithm 6 reduces to the
following scheme. {

yk = τkzk + (1− τk)
(
yk−1 − 1

L
∇f(yk−1)

)
,

zk+1 = zk − 1
αk
∇f(yk).

Optimized Gradient Method (OGM) [37, 68]

Algorithm 6 reduces to the scheme of OGM when n = 1 (this point is clearer in the
formulation of ITEM in [142]). Note that although we use OGM as the inspiration,
the original OGM has nothing to do with making the gradient small and there is
no hint on how a stochastic variant can be designed. OGM has a constant-time
faster worst-case rate than NAG, which exactly matches the lower complexity bound
in [34]. In the following proposition, we show that the OGM framework helps us
conduct a tight one-iteration analysis, which gives room for achieving our goal.

Proposition 5.1. In Algorithm 6, the following holds at any iteration k ≥ 0 and
∀x⋆ ∈ X ⋆.(

1−τk
τ 2kpk

E
[
f(x̃k+1)− f(x⋆)

]
+
L

2
E
[
∥zk+1 − x⋆∥2

])
+
(1−τk)2

2Lτ 2k
E
[
∥∇f(x̃k)∥2

]
≤
(
(1− τkpk)(1− τk)

τ 2kpk
E
[
f(x̃k)− f(x⋆)

]
+
L

2
E
[
∥zk − x⋆∥2

])
.

(3.4)

The terms inside the parentheses form the commonly used potential function of
SVRG variants. The additional E[∥∇f(x̃k)∥2] term is created by adopting the OGM
framework. In other words, we use the following potential function for Algorithm 6
(ak, bk, ck ≥ 0):

Tk = akE
[
f(x̃k)− f(x⋆)

]
+ bkE

[
∥zk − x⋆∥2

]
+

k−1∑
i=0

ciE
[
∥∇f(x̃i)∥2

]
.

We first provide a simple parameter choice, which leads to a simple and clean analysis.

Theorem 6 (Single-stage parameter choice). In Algorithm 6, if pk ≡ 1
n
, τk =

3
k/n+6

,
the following holds at the outputs.

E
[
∥∇f(xout)∥2

]
= O

(
n3L

(
f(x0)− f(x⋆)

)
+ n2L2R2

0

K3

)
,

E
[
f(x̃K)

]
− f(x⋆) = O

(
n2
(
f(x0)− f(x⋆)

)
+ nLR2

0

K2

)
.

(3.5)

38 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

In other words, to guarantee E
[
∥∇f(xout)∥

]
≤ ϵg and E

[
f(x̃K)

]
− f(x⋆) ≤ ϵf , the

complexities are O
(
n(L(f(x0)−f(x⋆)))1/3

ϵ
2/3
g

+ (nLR0)2/3

ϵ
2/3
g

)
and O

(
n
√

f(x0)−f(x⋆)
ϵf

+
√
nLR0√
ϵf

)
,

respectively.

From (3.5), we see that Algorithm 6 achieves fast O(1
K1.5) and O(1

K2) rates for
minimizing the gradient norm and function value at the same time. However, despite
being a simple choice, the oracle complexities are not better than the deterministic
methods in Table 3.1. Below we provide a two-stage parameter choice, which is
inspired by the idea of including a “warm-up phase” in [6, 81, 138, 89].

Theorem 7 (Two-stage parameter choice). In Algorithm 6, let pk = max{ 6
k+8

, 1
n
},

τk = 3
pk(k+8)

. The oracle complexities needed to guarantee that E
[
∥∇f(xout)∥

]
≤ ϵg

and that E
[
f(x̃K)

]
− f(x⋆) ≤ ϵf are

O

(
nmin

{
log

LR0

ϵg
, log n

}
+

(nLR0)
2/3

ϵ
2/3
g

)

and O

(
nmin

{
log

LR2
0

ϵf
, log n

}
+

√
nLR0√
ϵf

)
,

respectively.

Since ∥∇f(x̃K)∥2 = O
(
L
(
f(x̃K) − f(x⋆)

))
, the last iterate has the complexity

O(n log 1
ϵ
+

√
n
ϵ
) for minimizing the gradient norm. Then, by outputting the x̃ that

attains the minimum gradient, we can combine the results of outputting xout and
x̃K , which leads to the complexity O(n log 1

ϵ
+ min {n2/3

ϵ2/3
,
√
n
ϵ
}) in Table 3.1. This

complexity has a slightly worse dependence on n than Katyusha + L2S. It is due
to the adoption of n-dependent step size in L2S. As studied in [88], despite having
a better complexity, n-dependent step size boosts numerical performance only when
n is extremely large. If the practically fast n-independent step size is used for L2S,
Katyusha+L2S and Acc-SVRG-G have similar complexities. See also Appendix B.1.

If ϵ is large or n is very large, the recently proposed ANITA [89] achieves an O(n)
complexity, which matches the lower complexity bound Ω(n) in this case [151]. Since
ANITA uses the NAG framework, we show that similar results can be derived under
the OGM framework in the following theorem:

Theorem 8 (Low accuracy parameter choice). In Algorithm 6, let iteration N be
the first time Step 5 updates x̃k+1 = yk. If we choose pk ≡ 1

n
, τk ≡ 1 − 1√

n+1
and

3.4. NEAR-OPTIMAL ADAPTIVE ACCELERATED SVRG 39

terminate Algorithm 6 at iteration N , then the following holds at x̃N+1 :

E
[
∥∇f(x̃N+1)∥2

]
≤ 8L2R2

0

5(
√
n+ 1 + 1)

and E
[
f(x̃N+1)

]
− f(x⋆) ≤ LR2

0√
n+ 1 + 1

,

In particular, if the required accuracies are low (or n is very large), i.e., ϵ2g ≥
8L2R2

0

5(
√
n+1+1)

and ϵf ≥ LR2
0√

n+1+1
, then Algorithm 6 only has an O(n) oracle complexity.

In the low accuracy region (specified above), the choice in Theorem 8 removes
the O(log 1

ϵ
) factor in the complexity of Theorem 7. From the above two theorems,

we see that Algorithm 6 achieves a similar rate for minimizing the function value as
ANITA [89], which is the current best rate. We include some numerical justifications
of Algorithm 6 in Appendix B.1. We believe that the potential-based PEP approach
in [141] can help us identify better parameter choices of Algorithm 6, which we leave
for future work.

3.4 Near-Optimal Accelerated SVRG with Adap-

tive Regularization

Currently, there is no known stochastic method that directly achieves the optimal
rate in ϵ. To get near-optimal rates, the existing strategy is to use a carefully
designed regularization technique [106, 2] with a method that solves strongly convex
problems; see, e.g., [106, 2, 43, 26]. However, the regularization parameter requires
the knowledge of R0 or ∆0, which significantly limits its practicality.

Inspired by the recently proposed adaptive regularization technique [62], we de-
velop a near-optimal accelerated SVRG variant (Algorithm 7) that does not require
the knowledge of R0 or ∆0. Note that this technique was originally proposed for
NAG under the IDC assumption. Our development extends this technique to the
stochastic setting, which brings an O(

√
n) rate improvement compared with adaptive

regularized NAG. Moreover, we consider both IFC and IDC settings. Proofs in this
section are in Appendix B.4.

Detailed Design. Algorithm 7 has a “guess-and-check” framework. In the outer
loop, we first define the regularized objective f δt using the current estimate of reg-
ularization parameter δt, and then we initialize an accelerated SVRG method (the
inner loop) to solve the δt-strongly convex f δt . If the inner loop breaks at Step 9 or

5Note that we maintain the full gradient ∇fδt(x̃k) and ∇f(x̃k) = ∇fδt(x̃k)− δt(x̃k − x0).

40 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

Algorithm 7 R-Acc-SVRG-G

Input: accuracy ϵ > 0, parameters δ0 = L, β > 1, initial guess x0 ∈ Rd.
1: for t = 0, 1, 2, . . . do
2: Define f δt(x) = (1/n)

∑n
i=1 f

δt
i (x), where f δti (x) = fi(x) + (δt/2) ∥x− x0∥2.

3: Initialize vectors z0 = x̃0 = x0 and set τx, τz, α, p, CIDC, CIFC according to
Proposition 8.1.

4: for k = 0, 1, 2, . . . do
5: yk = τxzk + (1− τx) x̃k + τz

(
δt(x̃k − zk)−∇f δt(x̃k)

)
.

6: zk+1 = argminx

{〈
Gδtk , x

〉
+ (α/2) ∥x− zk∥2 + (δt/2) ∥x− yk∥2

}
, where

Gδtk ≜ ∇f δtik (yk)−∇f
δt
ik
(x̃k) +∇f δt(x̃k), and ik is sampled uniformly in [n].

7: x̃k+1 =

{
yk with probability p,

x̃k with probability 1− p.
8: if 5∥∇f(x̃k)∥ ≤ ϵ then output x̃k and terminate the algorithm.

9: if under IDC and (1 + δt
α
)k ≥

√
CIDC/δt then break the inner loop.

10: if under IFC and (1 + δt
α
)k ≥

√
CIFC/2δt then break the inner loop.

11: end for
12: δt+1 = δt/β.
13: end for

10, indicating the poor quality6 of the current estimate δt, δt will be divided by a
fixed β. Thus, conceptually, we can adopt any method that solves strongly convex
finite-sums at the optimal rate as the inner loop. However, since the constructions of
Step 9 or 10 require some algorithm-dependent constants, we have to fix one method
as the inner loop.

The inner loop we adopted is a loopless variant of BS-SVRG (Algorithm 2) in
Chapter 2. This is because (i) BS-SVRG is the fastest known accelerated SVRG
variant (for ill-conditioned problems) and (ii) it has a simple scheme, especially after
using the loopless construction [75]. However, its original guarantee (Theorem 2) is
built upon {zk}. Clearly, we cannot implement the stopping criterion (Step 8) on
∥∇f(zk)∥. Interestingly, we discover that its sequence {x̃k} works perfectly in our reg-
ularization framework, even if we can neither establish convergence on f(x̃k)− f(x⋆)
nor on ∥x̃k − x⋆∥2.7 Moreover, we find that the loopless construction significantly

6If Algorithm 7 does not terminate before it breaks at Step 9 or 10 for the current estimate δt, it
is quite likely that running infinite number of inner iterations, the algorithm still will not terminate.

7It is due to the special potential function of BS-SVRG (see (B.19)), which does not contain

3.4. NEAR-OPTIMAL ADAPTIVE ACCELERATED SVRG 41

simplifies the parameter constraints of BS-SVRG, which originally involves Θ(n)th-
order inequality. We provide the detailed parameter choice as follows:

Proposition 8.1 (Parameter choice). In Algorithm 7, we set τx = α+δt
α+L+δt

, τz =
τx
δt
− α(1−τx)

δtL
and p = 1

n
. We set α as the (unique) positive root of the cubic equation(

1− p(α+δt)
α+L+δt

) (
1 + δt

α

)2
= 1 and we specify CIDC = L2 + Lα2p

L+(1−p)(α+δt) , CIFC = 2L +

2Lα2p
(L+(1−p)(α+δt))δt . Under these choices, we have α

δt
= O

(
n +

√
n(L/δt + 1)

)
, CIDC =

O
(
(L+ δt)

2
)
and CIFC = O(L).

Under the choices of τx and τz, the α above is the optimal choice in our analysis.
Then, we can characterize the progress of the inner loop in the following proposition:

Proposition 8.2 (The inner loop of Algorithm 7). Using the parameters specified
in Proposition 8.1, after running the inner loop (Step 4-11) of Algorithm 7 for k
iterations, we can conclude that
(i) under IDC, i.e., ∥x0 − x⋆∥ ≤ R0 for some x⋆ ∈ X ⋆,

E
[
∥∇f(x̃k)∥

]
≤

(
δt +

(
1 +

δt
α

)−k√
CIDC

)
R0,

(ii) under IFC, i.e., f(x0)− f(x⋆) ≤ ∆0,

E
[
∥∇f(x̃k)∥

]
≤

(√
2δt +

(
1 +

δt
α

)−k√
CIFC

)√
∆0.

The above results motivate the construction of Step 9 and 10. For example, in
the IDC setting, when the inner loop breaks at Step 9, using (i) above, we obtain
E
[
∥∇f(x̃k)∥

]
≤ 2δtR0. Then, by discussing the relative size of δt and a certain

constant, we can estimate the complexity of Algorithm 7. The same methodology is
used in the IFC setting.

Theorem 9 (IDC case). Denote δ⋆IDC = ϵq
2R0

for some q ∈ (0, 1) and let the outer

iteration t = ℓ be the first time8 δℓ ≤ δ⋆IDC. The following assertions hold.
(i) At outer iteration ℓ, Algorithm 7 terminates with probability at least 1− q.9

these two terms.
8We assume that ϵ is small such that max {δ⋆IDC, δ

⋆
IFC} ≤ δ0 = L for simplicity. In this case,

ℓ > 0.
9If Algorithm 7 does not terminate at outer iteration ℓ, it terminates at the next outer iteration

with probability at least 1 − q/β. That is, it terminates with higher and higher probability. The
same goes for the IFC case.

42 CHAPTER 3. PRACTICAL FIRST-ORDER METHODS

(ii) The total expected oracle complexity of the ℓ+ 1 outer loops is

O

((
n log

LR0

ϵq
+

√
nLR0

ϵq

)
log

LR0

ϵq

)
.

Theorem 10 (IFC case). Denote δ⋆IFC = ϵ2q2

8∆0
for some q ∈ (0, 1) and let the outer

iteration t = ℓ be the first time δℓ ≤ δ⋆IFC. The following assertions hold.
(i) At outer iteration ℓ, Algorithm 7 terminates with probability at least 1− q.
(ii) The total expected oracle complexity of the ℓ+ 1 outer loops is

O

((
n log

√
L∆0

ϵq
+

√
nL∆0

ϵq

)
log

√
L∆0

ϵq

)
.

Compared with regularized Katyusha in Table 3.1, the adaptive regularization
approach drops the need to estimate R0 or ∆0 at the cost of a mere log 1

ϵ
factor in

the non-dominant term (if ϵ is small).

3.5 Chapter Summary and Discussion

In this chapter, we proposed several simple and practical schemes that complement
existing works (Table 3.1). Admittedly, the new schemes are currently only limited
to the unconstrained Euclidean setting, because our techniques heavily rely on the
interpolation conditions (1.2) and (2.2). On the other hand, methods such as OGM
[68], TM [134] and ITEM [142, 25], which also rely on these conditions, are still not
known to have their proximal gradient variants. Lee et al. [84] proposed proximal
point variants of these algorithms. Extending their techniques to our schemes is left
for future work. Another future work is to conduct extensive experiments to evaluate
the proposed schemes. We list some other future directions as follows.

(1) It is not clear how to naturally connect the parameters of M-OGM-G (Algo-
rithm 5) to OGM-G (Algorithm 4). The parameters of both algorithms seem to be
quite restrictive and hardly generalizable due to the special construction at (3.2).

(2) Is this new “momentum” in OGM-G beneficial for training deep neural net-
works? Other classic momentum schemes such as NAG [104] or heavy-ball momen-
tum method [123] are extremely effective for this task (see, e.g., [140]), and they
were also originally proposed for convex objectives.

(3) Can we directly accelerate SARAH (L2S)? It seems that existing acceleration
techniques fail to accelerate SARAH (or result in poor dependence on n as in [33]).
According to its position in Table 3.1, we suspect that there exists an accelerated
variant of SARAH which reduces to OGM-G when n = 1.

Chapter 4

Optimal Asynchronous Lock-Free
Stochastic First-Order Method

In this chapter, we focus on the following smooth strongly convex finite-sum problem:

x⋆ = argmin
x∈Rd

{
f(x) ≜

1

n

n∑
i=1

fi(x)

}
, (4.1)

where each fi is L-smooth and convex, f is µ-strongly convex.1 We further assume
that the computation of each fi is sparse, i.e., the computation is supported on a
set of coordinates Ti ⊆ {1, . . . , d}. For example, generalized linear models2 (GLMs)
satisfy this assumption. GLMs has the form: ∀i, fi(x) = ℓi(⟨ai, x⟩), where ℓi is some
loss function and ai ∈ Rd is a data sample. In this case, the support of each fi is
the set of non-zero coordinates of ai. Many large real-world datasets have very high
sparsity (see Table 4.1 for several examples).

To utilize this sparsity pattern, the lagged update technique [133] is purposed
and can be adopted for existing variance reduced gradient estimators (such as SAG
[130, 133], SVRG [64, 152], SAGA [29], S2GD [73], SARAH [111]). The benefits of
lagged update are that it accelerates the gradient computation by only looking at the
non-zero coordinates, and that it maintains the theoretic properties of the gradient
estimators. The detailed procedure of lagged update is explained in Section 4.3.2.
Another approach to handle the sparsity is to directly design sparse gradient esti-
mators [98, 82], which is even more efficient but requires careful theoretic analysis.

1In fact, we will only use a weaker quadratic growth assumption, i.e., the strong convexity at
any x ∈ Rd and x⋆, f(x)− f(x⋆) ≥ µ

2 ∥x− x⋆∥2 .
2The examples given in the introduction are all GLMs.

43

44 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

Figure 4.1: An asynchronous lock-free master-worker parallel computation model.

Inspired by the emerging parallel computing architectures such as multi-core com-
puter and distributed system, many parallel variants of the aforementioned methods
have been proposed, and there is a vast literature on those attempts. Among them,
asynchronous lock-free algorithms are of special interest, which is depicted in Fig-
ure 4.1. Asynchrony means that each worker queries the central model x and sends
update ∆x to the central node almost independently. The key benefit of asynchrony
is that the slowest worker is no longer the bottleneck of the system, and the lock-free
design fully utilizes the parallel computing resource. Intuitively, the lock-free design
would cause a lot of conflicts in the updates that happen simultaneously. Such con-
flicts could hurt the convergence. This is why the sparsity assumption is critical as
it reduces the potential conflicts.

Existing Methods. Recht et al. [125] proposed the first asynchronous lock-free
variant of SGD called Hogwild! and first proved that it can achieve a linear speed-up,
i.e., running Hogwild! with ρ parallel processes only requires O(1/ρ)-times the run-
ning time of the serial variant. The condition on the maximum overlaps among the
parallel processes is called the linear speed-up condition. Following Recht et al. [125],
Sa et al. [132], Lian et al. [90] analyzed asynchronous SGD for non-convex problems,
and Duchi et al. [40] analyzed for stochastic optimization; Mania et al. [98] refined
the analysis framework (called the perturbed iterate framework) and proposed Kro-
Magnon (asynchronous SVRG); Leblond et al. [82] simplified the perturbed iterate
analysis and proposed ASAGA (asynchronous SAGA), and in an extended version of
this work, Leblond et al. [83] further improved the analysis of KroMagnon and Hog-
wild!; Pedregosa et al. [120] derived proximal variant of ASAGA; Nguyen et al. [112]

4.1. SERIAL SPARSE ACCELERATED SVRG 45

refined the analysis of Hogwild!; Joulani et al. [65] proposed asynchronous methods
in online and stochastic settings; Gu et al. [51] proposed several asynchronous vari-
ance reduced algorithms for non-smooth or non-convex problems; Stich et al. [139]
studied a broad variety of SGD variants and improved the speed-up condition of
asynchronous SGD.

All the above mentioned asynchronous methods are based on non-accelerated
schemes such as SGD, SVRG and SAGA. Having witnessed the success of recently
proposed stochastic accelerated methods (see Section 1.2), it is natural to ask:

Is it possible to achieve stochastic acceleration in asynchronous lock-free optimiza-
tion? Will it lead to a worse linear speed-up condition?

The second question comes from a common perception that accelerated methods are
less tolerant to gradient noise, e.g., [30, 24].

We answer these two questions in this chapter: We propose the first asynchronous
lock-free stochastic accelerated method for solving problem (4.1), and we prove that it
requires the identical linear speed-up condition as the non-accelerated counterparts.

The works that are most related to this chapter are [41, 158, 53, 153]. Fang et al.
[41] proposed several asynchronous accelerated schemes. However, their analysis re-
quires consistent read and does not consider sparsity. The dependence on the number
of overlaps τ in their complexities is O(τ) compared with O(

√
τ) in our result. Zhou

et al. [158] naively extended their proposed accelerated method into asynchronous
lock-free setting. However, even in the serial case, their result imposes strong as-
sumptions on the sparsity. This issue is discussed in detail in Section 4.1.1. In the
asynchronous case, no theoretical acceleration is achieved in [158]. Hannah et al.
[53], Xiao et al. [153] proposed asynchronous accelerated block-coordinate descent
methods (BCD). However, as pointed out in Appendix F in [120], BCD methods
perform poorly in sparse problems since they focus only on a single coordinate of the
gradient information.

4.1 Serial Sparse Accelerated SVRG

We first introduce a new accelerated SVRG variant with sparse updates in the serial
case (Algorithm 8), which serves as the base algorithm for our asynchronous scheme.
Our technique is built upon the following sparse approximated SVRG gradient esti-
mator proposed in [98]: For uniformly random i ∈ [n] and y, x̃ ∈ Rd, define

Gy ≜ ∇fi(y)−∇fi(x̃) +Di∇f(x̃), (4.2)

46 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

Algorithm 8 SS-Acc-SVRG: Serial Sparse Accelerated SVRG

Input: initial guess x0 ∈ Rd, constant ω > 1 which controls the restart frequency.
Initialize: set the scalars m,ϑ, φ, η, S,R according to Theorem 11, initialize the

diagonal matrix D.
1: for r = 0, . . . , R− 1 do ▷ performing restarts
2: x̃0 = z00 = xr.
3: for s = 0, . . . , S − 1 do
4: Compute and store ∇f(x̃s).
5: for k = 0, . . . ,m− 1 do
6: Sample ik uniformly in [n] and let Tik be the support of fik .
7: [yk]Tik = ϑ[zsk]Tik + (1− ϑ) [x̃s]Tik − φ[D∇f(x̃s)]Tik . ▷ sparse coupling

8: [zsk+1]Tik = [zsk]Tik − η
(
∇fik([yk]Tik)−∇fik([x̃s]Tik) +Dik∇f(x̃s)

)
.

9: end for
10: x̃s+1 = yt for uniformly random t ∈ {0, 1, . . . ,m− 1}.
11: zs+1

0 = zsm.
12: end for
13: xr+1 =

1
S

∑S−1
s=0 x̃s+1.

14: end for
Output: xR.

where Di ≜ PiD with Pi ∈ Rd×d being the diagonal projection matrix of Ti (the
support of fi) and D = (1

n

∑n
i=1 Pi)

−1, which can be computed and stored in the
first pass. Note that we assume the coordinates with zero cardinality have been
removed in the objective function,3 and thus nId ⪰ D ⪰ Id. A diagonal element
of D corresponds to the inverse probability of the coordinate belonging to a uni-
formly sampled support Ti. It is easy to verify that this construction ensures the
unbiasedness Ei

[
Di∇f(x̃)

]
= ∇f(x̃).

This section is organized as follows: In Section 4.1.1, we summarize the key
technical novelty and present the convergence result; in Section 4.1.2, we remark on
the design of Algorithm 8.

4.1.1 Sparse Variance Correction

Intuitively, the sparse SVRG estimator (4.2) will lead to a larger variance compared
with the dense one (when D = Id). In the previous attempt, Zhou et al. [158] naively
extends an accelerated SVRG variant into the sparse setting, which results in a fairly

3Clearly, the objective value is not supported on those coordinates.

4.1. SERIAL SPARSE ACCELERATED SVRG 47

strong restriction on the sparsity as admitted by the authors.4 In contrast, sparse
variants of SVRG and SAGA in [98, 82] require no assumption on the sparsity, and
they achieve the same oracle complexities as their original dense versions.

Analytically speaking, the only difference of adopting the sparse estimator (4.2)
is on the variance bound. The analysis of non-accelerated dense SVRG typically uses
the following variance bound (D = Id) [64, 152]: E

[
∥Gy −∇f(y)∥2

]
≤ 4L

(
f(y) −

f(x⋆) + f(x̃) − f(x⋆)
)
. It is shown in [98] that the sparse estimator (4.2) admits

the same variance bound for any D. Thus, the analysis in the dense case can be
directly applied to the sparse variant, which leads to a convergence guarantee that
is independent of the sparsity.

However, things are not as smooth in the accelerated case. To (directly) accelerate
SVRG, we typically uses a much tighter bound [4]: E

[
∥Gy −∇f(y)∥2

]
≤ 2L

(
f(x̃)−

f(y)−⟨∇f(y), x̃− y⟩
)
(in the dense case D = Id). Unfortunately, in the sparse case

(D ̸= Id), we do not have an identical variance bound as before. The variance of the
sparse estimator (4.2) can be bounded as follows. The proof is given in Appendix C.1.

Lemma 3 (Variance bound for accelerated SVRG). The variance of Gy (4.2) can be
bounded as

Ei
[
∥Gy −∇f(y)∥2

]
≤ 2L

(
f(x̃)− f(y)− ⟨∇f(y), x̃− y⟩

)
− ∥∇f(y)∥2

+ 2 ⟨∇f(y), D∇f(x̃)⟩︸ ︷︷ ︸
R1

−⟨∇f(x̃), D∇f(x̃)⟩ . (4.3)

In general, except for the dense case, where we can drop the last three terms
above by completing the square, this upper bound will always be correlated with the
sparsity (i.e., D). This correlation causes the strong sparsity assumption in [158].
We may consider a more specific case where D = nId. In this case, the last three
terms above can be written as (n− 1) ∥∇f(y)∥2−n ∥∇f(y)−∇f(x̃)∥2, which is not
always non-positive.

Inspecting (4.3), we see that it is basically the term R1, which could be positive,
that causes the issue. We thus propose a novel sparse variance correction for accel-
erated SVRG, which is designed to perfectly cancel R1. The correction is added to
the coupling step (Step 7):

yk = ϑ · zk + (1− ϑ) · x̃s︸ ︷︷ ︸
Negative Momentum

− φ ·D∇f(x̃s)︸ ︷︷ ︸
Sparse Variance Correction

.

This correction neutralizes all the negative effect of the sparsity, in a similar way
as how the negative momentum cancels the term ⟨∇f(y), x̃− y⟩ in the analysis [4].

4It can be shown that when κ is large, almost no sparsity is allowed in their result.

48 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

We can understand this correction as a variance reducer that controls the additional
sparse variance. Then we have the following sparsity-independent convergence result
for Algorithm 8, and its proof is given in Appendix C.2.

Theorem 11. For any constant ω > 1, we choose m = Θ(n), ϑ =
√
m√

κ+
√
m
, φ = 1−ϑ

L
,

η = 1−ϑ
Lϑ

and S =
⌈
2ω
√

κ
m

⌉
. For any accuracy ϵ > 0, we restart R = O

(
log f(x0)−f(x⋆)

ϵ

)
rounds. Then, Algorithm 8 outputs xR satisfying E

[
f(xR)

]
−f(x⋆) ≤ ϵ in oracle com-

plexity

O

(
max

{
n,
√
κn
}
log

f(x0)− f(x⋆)
ϵ

)
.

This complexity matches the lower bound established in [151] (up to a log factor),
and is substantially faster than the O

(
(n + κ) log 1

ϵ

)
complexity of sparse approxi-

mated SVRG and SAGA derived in [82, 83] in the ill-conditioned regime (κ≫ n).

4.1.2 Other Remarks about Algorithm 8

• We adopt a restart framework to handle the strong convexity, which is also used
in [158] and is suggested in [4] (footnote 9). This framework allows us to relax the
strong convexity assumption to quadratic growth. Other techniques for handling
the strong convexity such as (i) assuming a strongly convex regularizer and using
proximal update [105, 4], and (ii) the direct constructions in [81, 161, 89] fail to
keep the inner iterates sparse, and we are currently not sure how to modify them.

• The restarting point xr+1 is chosen as the averaged point instead of a uniformly
random one because large deviations are observed in the loss curve if a random
restarting point is used.

• We can also use sparse variance correction to fix the sparsity issue in [158], which
leads to a slightly different method and somewhat longer proof.

• Algorithm 8 degenerates to a strongly convex variant of Acc-SVRG-G in Chapter 3
in the dense case (D = Id), which summarizes our original inspiration.

• A general convex (µ = 0) variant of Algorithm 8 can be derived by removing
the restarts and adopting a variable parameter choice similar to Acc-SVRG-G in
Chapter 3, which leads to a similar rate. We also find that our correction can be
used in Varag [81] and ANITA [89] in the general convex case. Since the previous
works on asynchronous lock-free optimization mainly focus on the strongly convex
case, we omit the discussion here.

4.2. ASYNCHRONOUS SPARSE ACCELERATED SVRG 49

Algorithm 9 AS-Acc-SVRG: Asynchronous Sparse Accelerated SVRG

Input: initial guess x0 ∈ Rd, constant ω > 1 which controls the restart frequency.
Initialize: set m,ϑ, φ, η, S,R according to Theorem 12, initialize shared variable z

and the diagonal matrix D.
1: for r = 0, . . . , R− 1 do ▷ performing restarts
2: x̃0 = z = xr.
3: for s = 0, . . . , S − 1 do
4: Compute in parallel and store ∇f(x̃s).
5: while number of samples ≤ m do in parallel
6: Sample i uniformly in [n] and let Ti be the support of fi.
7: [ẑ]Ti = inconsistent read of z on Ti.
8: [ŷ]Ti = ϑ · [ẑ]Ti + (1− ϑ) · [x̃s]Ti − φ · [D∇f(x̃s)]Ti .
9: [u]Ti = −η ·

(
∇fi([ŷ]Ti)−∇fi([x̃s]Ti) +Di∇f(x̃s)

)
.

10: for v ∈ Ti do
11: [z]v = [z]v + [u]v. ▷ coordinate-wise atomic write
12: end for
13: end while
14: x̃s+1 = ŷt, where ŷt is chosen uniformly at random among the inconsistent

ŷ in the previous epoch.
15: end for
16: xr+1 =

1
S

∑S−1
s=0 x̃s+1.

17: end for
Output: xR.

4.2 Asynchronous Sparse Accelerated SVRG

We then extend Algorithm 8 into the asynchronous setting (Algorithm 9), and ana-
lyze it under the perturbed iterate framework proposed in [98]. Note that Algorithm 9
degenerates into Algorithm 8 if there is only one thread (or worker).

Perturbed iterate analysis. Let us denote the kth update as Gŷk = ∇fik(ŷk) −
∇fik(x̃s) +Dik∇f(x̃s). The precise ordering of the parallel updates will be defined
in the next paragraph. Mania et al. [98] proposed to analyze the following virtual
iterates:

zk+1 = zk − η · Gŷk , for k = 0, . . . ,m− 1. (4.4)

They are called the virtual iterates because except for z0 and zm, other iterates may
not exist in the shared memory due to the lock-free design. Then, the inconsistent

50 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

read ẑk is interpreted as a perturbed version of zk, which will be formalized shortly.
Note that zm is precisely z in the shared memory after all the one-epoch updates are
completed due to the atomic write requirement, which is critical in our analysis.

Ordering the iterates. An important issue of the analysis in asynchrony is how
to correctly order the updates that happen in parallel. Recht et al. [125] increases
the counter k after each successful write of the update to the shared memory, and
this ordering has been used in many follow-up works. Note that under this ordering,
the iterates zk at (4.4) exist in the shared memory. However, this ordering is incom-
patible with the unbiasedness assumption (Assumption 1 below), that is, enforcing
the unbiasedness would require some additional overly strong assumption. Mania
et al. [98] addressed this issue by increasing the counter k just before each incon-
sistent read of z. In this case, the unbiasedness can be simply enforced by reading
all the coordinates of z (not just those on the support). Although this is expensive
and is not used in their implementation, the unbiasedness is enforceable under this
ordering, which is thus more reasonable. Leblond et al. [83] further refined and sim-
plified their analysis by proposing to increase k after each inconsistent read of z is
completed. This modification removes the dependence of ẑk on “future” updates,
i.e., on ir for r > k, which significantly simplifies the analysis and leads to better
speed-up conditions. See [83] for more detailed discussion on this issue. We follow
the ordering of [83] to analyze Algorithm 9. Given this ordering, the value of ẑk can
be explicitly described as

[ẑk]v = [z0]v − η
∑

j∈{0,...,k−1}
s.t. coordinate v was
written for j before k

[Gŷj]v.

Since ŷ is basically composing ẑ with constant vectors, it can also be ordered as

ŷk = ϑẑk + (1− ϑ) x̃s − φD∇f(x̃s). (4.5)

Assumptions. The analysis in this line of work crucially relies on the following
two assumptions.

Assumption 1 (unbiasedness). ẑk is independent of the sample ik. Thus, we have
E
[
Gŷk |ẑk

]
= ∇f(ŷk).

As we mentioned before, the unbiasedness can be enforced by reading all the
coordinates of z while in practice one would only read those necessary coordinates.

4.2. ASYNCHRONOUS SPARSE ACCELERATED SVRG 51

This inconsistency exists in all the follow-up works that use the revised ordering
[98, 83, 120, 158, 65, 51], and it is currently unknown how to avoid such an issue.
Another inconsistency in Algorithm 9 is that in the implementation, when a ŷk is
selected as the next snapshot x̃s+1, all the coordinates of ẑk are loaded. This makes
the choice of x̃s+1 not necessarily uniformly random. KroMagnon (the improved
version in [83]) also has this issue. In practice, no noticeable negative impact is
observed for the two inconsistencies.

Assumption 2 (bounded overlaps). There exists a uniform bound τ on the maxi-
mum number of iterations that can overlap together.

This is a common assumption in the analysis with stale gradients. Under this
assumption, the explicit effect of asynchrony can be modeled as:

ẑk = zk + η
k−1∑

j=(k−τ)+

Jkj Gŷj , (4.6)

where Jkj is a diagonal matrix with its elements in {0, 1}. The 1 elements indicate
that ẑk lacks some “past” updates on those coordinates.

Defining the same sparsity measure as in [125]: ∆ = 1
n
·maxv∈[d] |{i : v ∈ Ti}|, we

are now ready to establish the convergence result of Algorithm 9. We first present
the following guarantee for any τ given that some upper estimation of τ is available.
The proof is provided in Appendix C.3.

Theorem 12. For some τ̃ ≥ τ and any constant ω > 1, we choose m = Θ(n), ϑ =
√
m√

κ(1+2
√
∆τ̃)+

√
m
, φ = 1−ϑ

L
, η = (1−ϑ)

Lϑ(1+2
√
∆τ̃)

and S =

⌈
2ω
√

κ
m
(1 + 2

√
∆τ̃)

⌉
. For any

accuracy ϵ > 0, we restart R = O
(
log f(x0)−f(x⋆)

ϵ

)
rounds. In this case, Algorithm 9

outputs xR satisfying E
[
f(xR)

]
− f(x⋆) ≤ ϵ in oracle complexity

O

(
max

{
n,

√
κn(1 + 2

√
∆τ̃)

}
log

f(x0)− f(x⋆)
ϵ

)
.

An interesting observation is that Theorem 12 establishes an O(
√
κnτ) depen-

dence, which seems to conflict with the Ω(τ
√
κ) lower bound in the deterministic

n = 1 case (by adapting Theorem 3.15 in [16] with delayed gradient). Certainly
there is no contradiction. The subtlety is again the periodic synchronization struc-
ture of Algorithm 9. When n = 1, we have τ ≤ m = Θ(1) and Algorithm 9 is “almost
synchronous”. Based on this theorem, it is direct to identify the region of τ where a
theoretical linear speed-up is achievable.

52 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

Corollary 12.1 (Speed-up condition). In Theorem 12, let τ ≤ O
(

1√
∆
max

{
n
κ
, 1
})

.

Then, setting τ̃ = O
(

1√
∆
max

{
n
κ
, 1
})

, we have S = O
(
max

{
1,
√

κ
n

})
, which leads

to the total complexity #grad = R · S · (n+ 2m) = O
(
max {n,

√
κn} log f(x0)−f(x⋆)

ϵ

)
.

Proof. Note that τ̃ = O
(

1√
∆
max

{
n
κ
, 1
})

implies that 1 + 2
√
∆τ̃ = O

(
max

{
n
κ
, 1
})

.

In this case, it holds that S = O
(
max

{
1,
√

κ
n

})
, and then the total oracle complexity

of Algorithm 9 is #grad = R · S · (n+ 2m) = O
(
max {n,

√
κn} log f(x0)−f(x⋆)

ϵ

)
.

Note that the construction of Algorithm 9 naturally enforces that τ ≤ m. Hence,
the precise linear speed-up condition of AS-Acc-SVRG is that τ = O(n) and τ =
O(1√

∆
max

{
n
κ
, 1
}
), which is identical to that of ASAGA (cf., Corollary 9 in [83]) and

slightly better than that of KroMagnon (cf., Corollary 18 in [83]).

4.2.1 Some Insights about the Asynchronous Acceleration

Let us first consider the serial case (Algorithm 8). Observe that in one epoch, the
iterate yk is basically composing zk with constant vectors, we can equivalently write
the update (Step 8) as yk+1 = yk − ηϑ · Gyk . Thus, the inner loop of Algorithm 8 is
identical to that of (sparse) SVRG. The difference is that at the end of each epoch,
when the snapshot x̃ is changed, an offset (or momentum) is added to the iterate.
This has been similarly observed for accelerated SVRG in [159]. Note that since the
sequence z appears in the potential function, the current formulation of Algorithm
8 allows a cleaner analysis. Then, in the asynchronous case, the inner loop of Al-
gorithm 9 can also be equivalently written as the updates of asynchronous SVRG,
and the momentum is added at the end of each epoch. This gives us some insights
about the identical speed-up condition in Corollary 12.1: Since the asynchronous per-
turbation only affects the inner loop, the momentum is almost uncorrupted, unlike
the cases of noisy gradient oracle. That is, the asynchrony only corrupts the “non-
accelerated part” of Algorithm 9, which thus leads to the same speed-up condition
as the non-accelerated methods.

4.3 Experiments

We present numerical results for the proposed scheme on optimizing the ℓ2-logistic
regression problem:

f(x) =
1

n

n∑
i=1

log
(
1 + exp (−bi ⟨ai, x⟩)

)
+
µ

2
∥x∥2 , (4.7)

4.3. EXPERIMENTS 53

0 50 100 150 200 250 300

10-10

10-5

(a) Synthetic

0 50 100 150 200 250 300 350

10-10

10-5

(b) KDD2010.S

0 50 100 150 200

10-10

10-5

(c) RCV1.train

0 50 100 150 200

10-10

10-5

(d) News20

Figure 4.2: Ablation study for the practical effect of sparse variance correction (ab-
breviated as SVC in the legends). Run 10 seeds. Shaded bands indicate ±1 standard
deviation.

Table 4.1: Summary of the datasets. Density is the ratio of non-zero elements.

Scale Dataset n d µ Density ∆ Description

Small

Synthetic 100 000 100 000 10−7 10−5 10−5 Identity data matrix with random labels

KDD2010.S 70 000 29 890 095 10−7 10−6 0.15 The first 70 000 data samples of KDD2010

RCV1.train 20 242 47 236 10−6 1.6 · 10−3 0.42

News20 19 996 1 355 191 10−6 3.4 · 10−4 0.93

Large

KDD2010 19 264 097 29 890 095 10−10 10−6 0.16

RCV1.full 697 641 47 236 10−9 1.5 · 10−3 0.43 Combined test and train sets of RCV1

Avazu-site 23 567 843 999 962 10−10 1.5 · 10−5 0.96 Avazu-site.train

where ai ∈ Rd, bi ∈ {−1,+1}, i ∈ [n] are the data samples and µ is the regularization
parameter. We use the datasets from LIBSVM website [20], including KDD2010
[154], RCV1 [87], News20 [67], Avazu [66]. All the datasets are normalized to ensure
a precise control on κ. We focus on the ill-conditioned case where κ ≫ n (the case
where acceleration is effective). The dataset descriptions and the choices of µ are
provided in Table 4.1. We conduct serial experiments on the small datasets and
asynchronous experiments on the large ones. The asynchronous experiments were
conducted on a multi-core HPC. Detailed setup can be found in Appendix C.7.

Before presenting the empirical results, let us discuss two subtleties in the imple-
mentation:

• If each fi(x) = log
(
1 + exp (−bi ⟨ai, x⟩)

)
+ µ

2
∥x∥2, then it is supported on every co-

ordinate due to the ℓ2-regularization. Following [83], we sparsify the gradient of the
regularization term as µDix; or equivalently, fi(x) = log

(
1 + exp (−bi ⟨ai, x⟩)

)
+

µ
2
⟨x,Dix⟩. Clearly, this fi also sums up to the objective (4.7). The difference

is that the Lipschitz constant of fi will be larger, i.e., from 0.25 + µ to at most

54 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

0 1000 2000 3000 4000 5000

10-10

10-5

(a) Synthetic

0 1 2 3 4 5

105

10-10

10-5

(b) KDD2010.S

0 0.5 1 1.5 2 2.5

104

10-10

10-5

(c) RCV1.train

0 0.5 1 1.5 2

105

10-10

10-5

(d) News20

Figure 4.3: Running time comparison between using sparse gradient estimator and
lagged update (abbreviated as LU in the legends). The wall-clock time and objective
value are averaged over 10 runs.

0.25 + µn. Since we focus on the ill-conditioned case (L≫ µn), this modification
will not have significant effect.

• In Theorems 11 and 12, all the parameters have been chosen optimally in our
analysis except for ω, which controls the restart frequency. Despite all the theo-
retical benefits of the restart framework mentioned in Section 4.1.2, in practice,
we do not find performing restarts lead to a faster convergence. Thus, we do not
perform restarts in our experiments (or equivalently, we choose a relatively large
ω = 50). Clearly, this choice will not make our method a “heuristic” since the
theorems hold for any ω > 1. Detailed discussion is given in Appendix C.4.

Additional experiments for verifying the
√
κ dependence and a sanity check for

our implementation is included in Appendices C.5 and C.6, respectively.

4.3.1 The Effectiveness of Sparse Variance Correction

We first study the practical effect of the correction in the serial case. In Figure 4.2,
“with SVC” refers to Algorithm 8 and “without SVC” is a naive extension of the
dense version of Algorithm 8 into the sparse case (i.e., simply using a sparse estimator
(4.2)), which suffers from the same sparsity issue as in [158]. For the two variants,
we chose the same parameters in Theorem 11 to conduct an ablation study. In
theory, we would expect the sparsity issue to be more severe if D is closer to nId
(i.e., more sparse). Note that by definition, ∆ = maxi∈[d]D

−1
ii , and thus D ⪰ ∆−1Id.

Hence, smaller ∆ indicates that D is closer to nId. From Figure 4.2d to 4.2a, ∆ is
decreasing and we observe more improvement from the correction. The improvement
is consistent in our experiments, which justifies the effectiveness of sparse variance
correction.

4.3. EXPERIMENTS 55

0 0.5 1 1.5 2 2.5 3

106

10-10

10-5

(a) KDD2010, 20 threads

0 0.5 1 1.5 2 2.5 3 3.5 4

105

10-10

10-5

(b) RCV1.full, 20 threads

0 2 4 6 8

106

10-10

10-5

(c) Avazu-site, 20 threads

5 10 15 20

5

10

15

20

(d) KDD2010, speed-up

5 10 15 20

5

10

15

20

(e) RCV1.full, speed-up

5 10 15 20

5

10

15

20

(f) Avazu-site, speed-up

Figure 4.4: Convergence and speed-up for asynchronous sparse methods. Speed-up
is the improvement on the wall-clock time to achieve 10−5 sub-optimality relative to
using a single thread.

4.3.2 Sparse Estimator v.s Lagged Update

We then examine the running time improvement from adopting the sparse estimator
compared with using the lagged update technique. Lagged update technique handles
sparsity by maintaining a last seen iteration for each coordinate. When a coordinate
is involved in the current iteration, it computes an accumulated update from the
last seen iteration in closed form. Such computation is dropped when adopting a
sparse estimator, which is the source of running time improvement. Moreover, it
is extremely difficult to extend the lagged update technique into the asynchronous
setting as discussed in Appendix E in [83]. In Figure 4.3, we compare SS-Acc-SVRG
(Algorithm 8) with lagged update implementations of (dense) SS-Acc-SVRG and
Katyusha. Their default parameters were used. Note that the lagged update tech-
nique is much trickier to implement, especially for Katyusha. We need to derive the
closed-form solution of some complicated constant recursive sequence for the accu-
mulated update. Plots with respect to effective passes are provided in Appendix C.5,
in which SS-Acc-SVRG and Katyusha show similar performance.

56 CHAPTER 4. SCALABLE FIRST-ORDER METHODS

4.3.3 Asynchronous Experiments

We compare the practical convergence and speed-up of AS-Acc-SVRG (Algorithm 9)
with KroMagnon and ASAGA in Figure 4.4. We do not compare with the empirical
method MiG in [158], which requires us to tune two highly correlated parameters
with only limited insights. This is expensive or even prohibited for large scale tasks.
For the compared methods, we only tune the τ -related constants in their theoretical
parameter settings. That is, we tune the constant 1 + 2

√
∆τ̃ in Theorem 12 for AS-

Acc-SVRG and the constant c in the step size 1
cL

for KroMagnon and ASAGA. In fact,
in all the experiments, we simply fixed the constant to 1 for AS-Acc-SVRG (the same
parameters as the serial case), which worked smoothly. The main tuning effort was
devoted to KroMagnon and ASAGA, and we tried to choose their step sizes as large
as possible. The detailed choices can be found in Appendix C.7. Due to the scale
of the problems, we only conducted a single run. From Figure 4.4, we see significant
improvement of AS-Acc-SVRG for ill-conditioned tasks and similar practical speed-
ups among the three methods, which verifies Theorem 12 and Corollary 12.1. We also
observe a strong correlation between the practical speed-up and ∆, which is predicted
by the theoretical O(1/

√
∆) dependence. It seems that we cannot reproduce the

speed-up results in [83] on the RCV1.full dataset. This could be due to the difference
in the programming languages, as we used C++ and they used Scalar. Pedregosa
et al. [120] also used C++ implementation and we observe a similar 10× speed-up of
ASAGA on the KDD2010 dataset.

4.4 Chapter Summary

In this chapter, we proposed a new asynchronous accelerated SVRG method which
achieves the optimal oracle complexity under the perturbed iterate framework. We
show that it requires the same linear speed-up condition as the non-accelerated meth-
ods. Empirical results justified our findings. The limitations of our algorithm are
that it requires a known µ and it does not support proximal operators. Directly in-
corporating the sparse proximal techniques in [120] results in an accelerated method
that requires the knowledge of ∇f(x⋆).

Chapter 5

Neural Network Optimization: A
Robust Nesterov’s Momentum

Due to the non-smoothness and non-convexity of the loss function of neural networks,
it is generally hard to design tailor-made optimizers for neural networks. The current
strategy on training deep neural networks (DNN) in the community is to migrate
the existing techniques in convex optimization to deep learning, which has achieved
great success, e.g., momentum techniques [140], adaptive stepsize [39]. This chapter
follows this trend: we propose a new type of (stochastic) Nesterov’s momentum,
prove that it enjoys the optimal convergence rate for convex problems, and then we
conduct extensive experiments to evaluate its benefits in deep learning applications.

Nesterov’s momentum [104, 107] is a widely used momentum technique in deep
learning applications1 (SGD with Nesterov’s momentum):

yk+1 = xk − η · ∇fik(xk),
xk+1 = yk+1 + β · (yk+1 − yk), for k ≥ 0,

(5.1)

In this chapter, we propose a novel momentum technique called the Amortized
Nesterov’s Momentum. The key feature of this new momentum is that it achieves
enhanced robustness2 and acceleration at the same time, compared with plain SGD.
Theoretically speaking, it has a parameter which trades Nesterov’s acceleration (not
convergence rate) for robustness. At one extreme, the proposed method is equivalent
to AC-SA [78] and enjoys the optimal rate. At the other extreme, the method
becomes mirror descent SA [103], which has a constant-factor better variance control

1See Section 5.4 for an introduction to the usage of Nesterov’s momentum in deep learning.
2Here robustness refers to how well the method controls the variance of the stochastic noise, i.e.,

the variance term in the expected error and the probability of large deviations.

57

58 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

than AC-SA. It is important to note that our trade-off does not necessarily lead to
a slower convergence rate and our technique has clear intuition.

The high-level idea is rather simple: stochastic Nesterov’s momentum in existing
Pytorch/Tensorflow implementations (see Section 5.4) can be unreliable since it is
provided only by the previous iterate. The iterate potentially has large variance,
which may lead to a false momentum that perturbs the training process. We thus
propose to use the stochastic Nesterov’s momentum based on several past iterates,
which provides robust acceleration. In other words, instead of immediately using an
iterate to provide momentum, we put the iterate into an “amortization plan” and
use it later. This construction is also inspired by our acceleration tricks proposed in
Chapter 2.

Another highlight is that we analyze the proposed methods in a general setting
that covers smooth/non-smooth, deterministic/stochastic convex problems and al-
lows choosing non-Euclidean norm for the problem space. Establishing the theoretic
basis of our methods in this general setup extends the scope of our methods and
benefits more applications.

This chapter is organized as follows: In Section 5.1, we specify the notations and
general norm setup. In Section 5.2, we formally introduce the amortized momentum
technique. In Section 5.3, we establish the convergence results under general norm
setup. In Section 5.4, we extend the amortized momentum technique into the deep
learning setting. In Section 5.5, we present extensive deep learning experiments to
evaluate the new methods.

Practitioners from deep learning community can readily skip all the theoretic
parts of this chapter and treat general norm setup as the standard Euclidean one.

5.1 Notations and General Norm Setup

For readers not familiar with the general space notions, the following setup can be
regarded as the standard Euclidean one, i.e., ∥·∥ is the Euclidean norm and ⟨·, ·⟩ is
the inner product, and the composite function h can be treated as h ≡ 0.

Notations and Generalities. We use E to denote a finite-dimensional real vector
space and E∗ is its dual space. The value of a linear function g ∈ E∗ at x ∈ E is
represented by ⟨g, x⟩. ∥·∥ denotes an arbitrary norm in E and the dual norm ∥·∥∗
on E∗ is defined in the standard way: ∥g∥∗ ≜ max∥x∥=1 ⟨g, x⟩. Scalar multiplication
for v ∈ E and β ∈ R is denoted as β · v. The notation [m] refers to the set
{1, . . . ,m} and the symbol ← denotes assignment. We use E to denote expectation

5.2. AMORTIZED NESTEROV’S MOMENTUM 59

and the conditional expectation for a random process i0, i1, . . . is denoted as Eik [·] ≜
E [· | (i0, . . . , ik−1)].

Problem Setup. We consider the convex composite problem [12, 108]:

min
x∈X

{
F (x) ≜ f(x) + h(x)

}
,

where X ⊆ E is a non-empty closed convex set and h is a proper convex function.
We denote x⋆ ∈ X as a solution to this problem. ∇f(x) ∈ E∗ represents (one of)
the (sub)gradient of f at x. Given an input x ∈ E, the stochastic gradient oracle
outputs an unbiased ∇fi(x) ∈ E∗, where the random variable i is independent of x.

We introduce the proximal setting, which generalizes the usual Euclidean setting.
The distance generating function d : X → R is required to be continuously differen-
tiable and 1-strongly convex with respect to ∥·∥, i.e., d(x)− d(y)− ⟨∇d(y), x− y⟩ ≥
1
2
∥x− y∥2 ,∀x, y ∈ X. The prox-term (Bregman divergence) associated with d is

Vd(x, y) ≜ d(x) − d(y) − ⟨∇d(y), x− y⟩ ,∀x, y ∈ X. By adjusting ∥·∥ and d(·) to
the geometry of the problem, mirror descent achieves a smaller problem-dependent
constant than the Euclidean algorithms, which is its key benefit [102]. Typical prox-
imal setups can be found in Section 5.3.3 in Ben-Tal and Nemirovski [14]. At a first
reading, this setting can be taken as the standard Euclidean setting: X = E = Rn,
∥·∥ = ∥·∥2, ⟨·, ·⟩ is the inner product, d(x) = 1

2
∥x∥22 and Vd(x, y) =

1
2
∥x− y∥22.

We assume that Vd is chosen such that the prox-mapping,

proxh(x,G) ≜ argmin
u∈X

{
Vd(u, x) + ⟨G, u⟩+ h(u)

}
,

can be easily computed for any x ∈ X,G ∈ E∗. Examples where this assumption is
satisfied can be found in Parikh et al. [117], Ghadimi and Lan [46].

5.2 Amortized Nesterov’s Momentum

In this section, we introduce SGD with Amortized Nesterov’s Momentum (AM1-
SGD) in Algorithm 10, and in Algorithm 11, we reformulate Algorithm 10 into a
“momentum scheme” under the Euclidean setting with h ≡ 0 and constant momen-
tum βs = β. It can be verified that Algorithms 10 and 11 are equivalent through
η = αs(1−βs). This momentum scheme is related to how we implement AM1-SGD for
deep learning applications and is also clearer for providing intuition. In Section 5.2.1,
we propose another method (AM2-SGD) to implement the idea of utilizing several
past iterates. To elaborate the features of AM1-SGD, we make the following remarks:

3For simplicity, we assume K is divisible by m.

60 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

Algorithm 10 AM1-SGD (Theoretic)

Input: Initial guess x0, parameter {αs},
momentum {βs}, amortization length
m, iteration number K.

Initialize: x̃0 = z0 = x0, S = K/m.3

for s = 0, . . . , S − 1 do
for j = 0, . . . ,m− 1 do

k = sm+ j.
xk = (1− βs) · zk + βs · x̃s.
zk+1=proxαsh

(
zk, αs ·∇fik(xk)

)
.

end for
x̃s+1 =

1−βs
m
·
∑m

j=1 zsm+j + βs · x̃s.
end for

Output: x̃S.

Algorithm 11 AM1-SGD (Empirical)

Input: Initial guess x0, learning rate η,
momentum β, amortization length m,
iteration number K.

Initialize: x← x0, x̃← x0, x̃
+ ← 0⃗.

for k = 0, . . . , K − 1 do
x← x− η · ∇fik(x).
x̃+ ← x̃+ + 1

m
· x.

if (k + 1) mod m = 0 then
x← x+ β · (x̃+ − x̃).
x̃← x̃+, x̃+ ← 0⃗.

end if
end for

Output: Option I: x, Option II: x̃.

+β · (-) yk+1 yk

+β · (-) x~+ x~

............... xk+1

x~

xkxk-m+2xk-m+1xk-2m+2

x~+

Amortized Nesterov's Momentum:

Nesterov's Momentum:

The sequence of (stochastic) gradient descent yk yk+1

Figure 5.1: Graphical illustration of
Amortized Nesterov’s Momentum. This
figure describes how the momentum is in-
jected into the sequence of gradient de-
scent {xk}.

A periodical and large momentum.
A graphical illustration of Algorithm 11
is included in Figure 5.1, which depicts
how AM1-SGD leverages several past it-
erates to provide momentum. Nesterov’s
momentum is injected in every iteration.
In comparison, the amortized momen-
tum is injected every m iterations, while
this momentum β · (x̃+ − x̃) is expected
to be much larger than β · (yk+1 − yk) if
the same η and β are used. Intuitively,
we can understand the amortized mo-
mentum as an m times larger Nesterov’s
momentum, which is applied every m it-
erations.

The bridge between accelerated schemes and mirror descent. It can be
verified that if m = 1, Algorithm 11 is equivalent to (stochastic) Nesterov’s scheme
(5.1) and Algorithm 10 becomes AC-SA [78]; if m = K, Algorithm 11 is the SGD

5.2. AMORTIZED NESTEROV’S MOMENTUM 61

that outputs the average of the whole history and Algorithm 10 is equivalent to
mirror descent SA [103, 78].

Acceleration and tail averaging. The main ingredients of AM1-SGD are Nes-
terov acceleration and tail averaging, namely, the output point x̃ is an m-iterations
tail average and the amortized momentum is provided by two consecutive tail aver-
ages. It seems that the effects of outputting a tail average and applying the amor-
tized momentum are independent. Option I in Algorithm 11, which we provide as a
heuristic option, omits the tail averaging at the output point.

Options. Option II in Algorithm 11, which corresponds to the output of Algo-
rithm 10, is the theoretical option that we analyze in Section 5.3. Option I, in addi-
tion to omitting the tail averaging effect, follows the implementations of Nesterov’s
momentum in PyTorch [118] and Tensorflow [1]. We will see in Section 5.4 that
the standard Nesterov’s momentum also has this type of heuristic and theoretical
options.

Connections with BS-SVRG in Chapter 2. Our original inspiration of AM1-
SGD comes from BS-SVRG (Algorithm 2) in Chapter 2, which uses a previously
calculated “snapshot” point x̃ to provide momentum. AM1-SGD also uses an ag-
gregated point to provide momentum and it shares many structural similarities with
BS-SVRG.

5.2.1 AM2-SGD

We propose another realization of the amortization technique (AM2-SGD) in Al-
gorithm 12, and similar to AM1-SGD, its “momentum scheme” reformulation in
Algorithm 13. We were inspired by the constructions of SVRG [64] and SAGA [29],
the most popular methods in finite-sum convex optimization—to reuse the informa-
tion from several past iterates, we can either maintain a “snapshot” that aggregates
the information or keep the iterates in a table.

We discuss some interesting characteristics of AM2-SGD by making the following
remarks:

Identical iterations. The workload of AM1-SGD varies for different iterations due
to the if-clause (or the two-loop structure). This to some extent limits its extensibility
to other settings (e.g., asynchronous setting in Chapter 4). AM2-SGD does not have
this issue and is structurally simpler. Although AM2-SGD requires storing a table

62 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

Algorithm 12 AM2-SGD (Theoretic)

Input: Initial x0, amortization length m,
point table ϕ =

[
ϕ1 · · · ϕm

]
∈ Em,

parameter {αk}, momentum {βk}, iter-
ation number K.

Initialize: z0 = ϕ0
j = x0, ∀j ∈ [m].

for k = 0, . . . , K − 1 do
Sample jk uniformly in [m].
xjkk = (1− βk) · zk + βk · ϕkjk .
zk+1=proxαkh

(
zk, αk ·∇fik(x

jk
k)
)
.

ϕk+1
jk

= (1 − βk) · zk+1 + βk · ϕkjk
and keep other entries unchanged (i.e.,
ϕk+1
j = ϕkj for j ̸= jk).

end for
Output: ϕ̄K = 1

m

∑m
j=1 ϕ

K
j .

Algorithm 13 AM2-SGD (Empirical)

Input: Initial x0, amortization length m,
point table ϕ ∈ Rn×m, learning rate η,
momentum β, iteration number K.

Initialize: ϕ0
j = x0,∀j ∈ [m]. j0 is uni-

formly sampled in [m]. If Option II,
store a running average ϕ̄0 = x0.
for k = 0, . . . , K − 1 do

ϕk+1
jk

= xk − η · ∇fik(xk), keep other

entries unchanged (ϕk+1
j =ϕkj for j ̸=jk).

Sample jk+1 uniformly in [m].
xk+1 = ϕk+1

jk
+ β · (ϕk+1

jk+1
− ϕkjk).

if Option II then
ϕ̄k+1 = ϕ̄k + 1

m
·
(
ϕk+1
jk
− ϕkjk

)
.

end for
Output: Option I: xK , Option II: ϕ̄K .

of vectors, which could be expensive in practice, the table size m is tunable, and we
will see that in theory, it is more beneficial to choose relatively small m.

“Random tail averaging”. Based on the expectation of geometric distribution,
we know that the point table ϕ is expected to store m iterates from the most recent
Θ(m logm) iterates. Thus, we can regard the output ϕ̄, the average of the point table,
as a “random tail average”. The momentum of AM2-SGD is randomly provided by
two past iterates in the table. Interestingly, as shown in Section 5.5.2, when using
the same (η, β,m), the convergence of AM2-SGD is similar to AM1-SGD while being
slightly faster. This suggests that randomly incorporating past iterates beyond m
iterations helps.

Options. As is the case for AM1-SGD, we provide Option I in Algorithm 13 fol-
lowing the same heuristics. However, in our preliminary experiments, we found that
the performance of Option I is not stable, and thus we do not recommend this option
for AM2-SGD. We believe that it is caused by the additional randomness {jk}.

Connections with BS-SAGA in Chapter 2. Similar to AM1-SGD, the con-
struction of AM2-SGD is inspired by BS-SAGA (Algorithm 15) in Chapter 2, and

5.3. CONVERGENCE RESULTS 63

they share many structural similarities.

5.3 Convergence Results

In this section, we analyze the theoretic versions of AM1-SGD (Algorithm 10) and
AM2-SGD (Algorithm 12) in the convex setting. Comparing Algorithms 10 and 12,
we see that their iterations can be generalized as follows (y+ = xk+1 for AM1-SGD):

x = (1− β) · z + β · y,
z+ = proxαh

(
z, α · ∇fi(x)

)
,

y+ = (1− β) · z+ + β · y.
(5.2)

This scheme is first proposed by Auslender and Teboulle [9], which represents one
of the simplest variants of Nesterov’s methods (see Tseng [148] for the others). This
scheme is modified into various settings [59, 78, 46, 158, 159, 81] to achieve acceler-
ation.

We impose the following assumptions on the regularity of f and ∇fi, which are
classical in the analysis of stochastic approximation algorithms (identical to the ones
in Ghadimi and Lan [46] with µ = 0):

Assumption 3. For some L ≥ 0,M ≥ 0, σ ≥ 0,

(a) 0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L
2
∥y − x∥2 +M ∥y − x∥ , ∀x, y ∈ X.4

(b) Ei [∇fi(x)] = ∇f(x),∀x ∈ X.

(c) Ei
[
∥∇fi(x)−∇f(x)∥2∗

]
≤ σ2,∀x ∈ X.

These assumptions cover several important classes of convex problems. For ex-
ample, (a) covers the cases of f being L-smooth (M = 0) or L0-Lipschitz continuous
(M = 2L0, L = 0) convex functions and if σ = 0 in (c), the assumptions cover several
classes of deterministic convex programming problems.

The following lemma serves as a cornerstone for the convergence analysis of AM1-
SGD and AM2-SGD. All the proofs in this section are given in Appendix D.

4When M > 0, f is not necessarily differentiable and ∇f(x) denotes an arbitrary sub-gradient
[107] of f at x.

64 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

Lemma 4. Let δx ≜ ∇f(x) − ∇fi(x). If α(1 − β) < 1
L
, the update scheme (5.2)

satisfies the recursion:

1

1− β
(
F (y+)− F (x⋆)

)
+

1

α
Vd(x

⋆, z+) ≤ β

1− β
(
F (y)− F (x⋆)

)
+

1

α
Vd(x

⋆, z)

+
(∥δx∥∗ +M)2

2(α−1 − L(1− β))
+ ⟨δx, z − x⋆⟩ .

Based on this key recursion, we establish the convergence rates for AM1-SGD
and AM2-SGD as follows.

Theorem 13. In AM1-SGD, if βs =
s
s+2

, αs =
λ1

L(1−βs) where

λ1 = min

{
2

3
,

L
√
Vd(x⋆, x0)√

2m
√
σ2 +M2(S + 1)

3
2

}
.

Then,

(a) The output x̃S satisfies

E [F (x̃S)]− F (x⋆) ≤
6LmVd(x

⋆, x0)

(K +m)2
+

8
√
2Vd(x⋆, x0)

√
σ2 +M2

√
K +m

≜ K0(m).

(b) If X is compact and the variance has a “light tail”, i.e.,

Ei
[
exp

{
∥∇fi(x)−∇f(x)∥2∗ /σ

2
}]
≤ exp{1},∀x ∈ X,

denoting DX ≜ maxx∈X ∥x− x⋆∥, for any Λ ≥ 0, we have

Prob {{F (x̃S)− F (x⋆) ≤ K0(m) +K1(m,Λ)}}
≥ 1−

(
exp{−Λ2/3}+ exp{−Λ}

)
,

where the deviation term K1(m,Λ) is

K1(m,Λ) ≜
4
√
6Λσ

(√
3Vd(x⋆, x0) +DX

)
3
√
K +m

.

Remark (a): Theorem 13a gives the expected objective error, from which the
trade-off of m is clear: Increasing m improves the dependence on variance σ but
deteriorates the O(L/K2) term (i.e., the acceleration). Note that for AM1-SGD, m

5.3. CONVERGENCE RESULTS 65

is strictly constrained in {1, . . . , K}. Whenm = K, AM1-SGD is equivalent to mirror
descent SA, and the convergence rate in Theorem 13a becomes the corresponding
O(L/K + (σ +M)/

√
K) (cf. Theorem 1 in Lan [78]). By taking derivative, we see

that the minimum of the expected error K0(m) is obtained at eitherm = 1 orm = K.
This to some extent undermines the choices of setting 1 < m < K. However, it is
worth noting that in practice, the values Vd(x

⋆, x0), σ, L and M could be unknown,
especially Vd(x

⋆, x0). In this case, these values are chosen as some upper estimations
and can be very inaccurate. The parameter m allows users to determine the amount
of acceleration and variance control for concrete tasks, which is much more flexible
than sticking to m = 1 or m = K.

Remark (b): Theorem 13b provides the probability of the objective value deviat-
ing from its expected performance (i.e., K0(m)). It is clear that increasing m leads
to smaller deviations with the same probability and thus improves the robustness of
the iterates. The additional compactness and “light tail” assumptions are similarly
required in Nemirovski et al. [103], Lan [78], Ghadimi and Lan [46]. Note that the
“light tail” assumption is stronger than Assumption (c). Recently, Nazin et al. [101]
established similar bounds without the “light tail” assumption by truncating the
gradient. However, as indicated by the authors, their technique cannot be used for
accelerated algorithms due to the accumulation of bias.

For AM2-SGD, we only give the expected convergence results as follows.

Theorem 14. In AM2-SGD, if βk =
k/m
k/m+2

and αk =
λ2

L(1−βk)
where

λ2 = min

2

3
,

L
√
Vd(x⋆, x0)

√
m(σ +M)

(
K−1
m

+ 2
) 3

2

,
the output ϕ̄K satisfies

E
[
F (ϕ̄K)

]
− F (x⋆)

≤
4(m2 −m)

(
F (x0)− F (x⋆)

)
+ 6LmVd(x

⋆, x0)

(K + 2m− 1)2
+

8
√
Vd(x⋆, x0)(σ +M)√
K + 2m− 1

.
(5.3)

Remark: In comparison with Theorem 13a, Theorem 14 has an additional term
F (x0) − F (x⋆) in the upper bound, which is inevitable. This difference comes from
different restrictions on the choice of m. For AM2-SGD, m ≥ 1 is the only require-
ment. Since it is impossible to letm≫ K to obtain an improved rate, this additional
term is inevitable. As a sanity check, we can let m→∞ to obtain a point table with
almost all x0, and then the upper bound becomes exactly F (x0)− F (x⋆). Since the

66 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

first term in (5.3) increases rapidly with m, a smaller m is favored for AM2-SGD. In
some cases, there exists an optimal choice of m > 1 in Theorem 14. However, the
optimal choice could be messy and thus we omit the discussion here. Comparing the
rates, we see that when using the same m, AM2-SGD has slightly better dependence
on σ, which is related to the observation in Section 5.5.2 that AM2-SGD is always
slightly faster than AM1-SGD.

If m = O(1), Theorems 13 and 14 establish the optimal O(L/K2+(σ+M)/
√
K)

rate in the convex setting (see Lan [78] for optimality), which verifies AM1-SGD
and AM2-SGD as variants of Nesterov’s method [104, 107]. We conducted convex
experiments (in Appendix D.1.8) as sanity checkers for the theoretical results. Note
that the improvements on stepsize policy proposed in Hu et al. [59] and Ghadimi and
Lan [46] are orthogonal to the amortization technique and thus can be directly used
in Theorems 13 and 14. From the above analysis, the effect ofm can be understood as
trading Nesterov’s acceleration (the O(1/K2) term) for variance control (the O(1/K)
term). We expect amortization boosts the rate if σ or M is large, which is justified
in Appendix D.1.8.

5.4 Amortized Momentum for Deep Learning

We start with reviewing the usage of Nesterov’s momentum in deep learning. We
discuss some subtleties in the implementation and evaluation, which contributes to
the interpretation of our methods.

The standard SGD with Nesterov’s momentum has the following scheme

yk+1 = xk − η · ∇fik(xk),
xk+1 = yk+1 + β · (yk+1 − yk), for k ≥ 0,

(5.4)

which is widely used in deep learning. To make this point clear, recall that the
reformulation in Sutskever et al. [140] (scheme (5.5), also the Tensorflow version)
and the PyTorch version (scheme (5.6)) have the following schemes (v, vpt ∈ Rn and
v0 = vpt0 = 0⃗): for k ≥ 0,

TensorFlow: vk+1 = β · vk − η · ∇fik(yk + β · vk),
yk+1 = yk + vk+1.

(5.5)

PyTorch: vptk+1 = β · vptk +∇fik(xk),
xk+1 = xk − η · (β · vptk+1 +∇fik(xk)).

(5.6)

Here the notations are modified based on their equivalence to scheme (5.4). It can be
verified that schemes (5.5) and (5.6) are equivalent to (5.4) through vk = β−1·(xk−yk)

5.4. AMORTIZED MOMENTUM FOR DEEP LEARNING 67

0 20 40 60 80
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y%
Test Accuracy

SGD
M-SGD
OM-SGD

(a)

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

Tr
ai

n
Lo

ss

Train Loss
SGD (batch)
M-SGD (batch)
SGD (full)
M-SGD (full)

(b)

0 20 40 60 80
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 A
cc

ur
ac

y
ST

D%

Test Accuracy STD
SGD
M-SGD

(c)

Figure 5.2: ResNet34 on CIFAR-10. For all methods, initial learning rate η0 = 0.1,
momentum β = 0.9, run 5 seeds (start at same x0). In (a) (b), we plot mean curves
with shaded bands indicate ±1 standard deviation. (c) shows the standard deviation
of test accuracy and its average over 90 epochs.

and vptk = η−1β−1 · (yk−xk), respectively (see Defazio [28] for other equivalent forms
of scheme (5.4)).

Interestingly, both PyTorch and Tensorflow5 track {xk}, which we refer to as
M-SGD. This choice allows a consistent implementation when wrapped in a generic
optimization layer [28]. The accelerated rate is built upon {yk} in Nesterov [107].
We use OM-SGD to refer to the Original M-SGD that outputs {yk}.

It can be verified that if m = 1, AM1-SGD (Algorithm 11) and AM2-SGD (Algo-
rithm 13) with Option I are equivalent to M-SGD, and with Option II, they are equiv-
alent to OM-SGD. By slightly modifying Algorithm 11, we can reduce its amortized
iteration cost. We discuss this and other implementation details in Appendix D.1.1.

To introduce some evaluation metrics, we report the results of training ResNet346

[55] on CIFAR-10 [76] using SGD and M-SGD in Figure 5.2 and make the following
remarks:

• The role of SGD. The performance of SGD is used as a reference in this section.
Relating to Figure 5.1, we regard momentum as an add-on to plain SGD, and
thus we choose the same learning rates for SGD and the momentum schemes.
Such a perspective helps us understand what has been changed when applying
momentum. Figure 5.2a shows that Nesterov’s momentum hurts the conver-
gence in the first 60 epochs but accelerates the final convergence, which verifies
the importance of momentum for achieving high accuracy. Figure 5.2c sug-

5Tensorflow tracks the values {yk + β · vk} = {xk}.
6The settings follow Ma and Yarats [96]. Since 90-epoch training is not standard for CIFAR-10,

we choose the models that can achieve decent performance in 90 epochs.

68 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

0 5 10 15 20 25 30
m

94.2

94.4

94.6

94.8

Fi
na

l A
cc

ur
ac

y%

Final Test Accuracy
Option I
Option II

0 5 10 15 20 25 30
m

0.4

0.6

0.8

1.0

Av
er

ag
e

ST
D%

Average of Test Accuracy STD
Option I
Option II

(a) Sweeping m in {3, 5, 7, 10, 20, 30}. Run 5 seeds.

0 20 40 60 80
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y%

Test Accuracy

SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

0 20 40 60 80
Epoch

0

1

2

3

4

Te
st

 A
cc

ur
ac

y
ST

D%

Test Accuracy STD
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

(b) Fixing m = 5. Run 20 seeds.

Figure 5.3: ResNet34 on CIFAR-10. For all methods, η0 = 0.1, β = 0.9, using same
x0. Labels of AM1-SGD are ‘AM1-SGD-{Option}’. Shaded bands (or bars) indicate
±1 standard deviation.

gests that adding Nesterov’s momentum slightly increases the uncertainty in
the training process of SGD.

• Train-batch loss vs. Full-batch loss. In Figure 5.2b, train-batch loss stands for
the average of batch losses forwarded in an epoch, which is commonly used to
indicate the training process in deep learning. Full-batch loss is the average
loss over the entire training dataset evaluated at the end of each epoch. In
terms of optimizer evaluation, full-batch loss is much more informative than
train-batch loss as it reveals the robustness of an optimizer. However, full-
batch loss is expensive to evaluate. On the other hand, test accuracy couples
optimization and generalization, but since it is also evaluated at the end of
the epoch, its convergence is similar to full-batch loss (see Figure 5.2a, 5.2b).
Considering the basic usage of momentum in deep learning, we mainly use test
accuracy to evaluate optimizers.

• Robustness. Inspired by Theorem 13b, we run a method multiple times with
different seeds (same x0) and measure the standard deviation of accuracy or
loss at each iterate. Assuming a Gaussian underlying distribution, we can

5.5. EXPERIMENTS 69

Table 5.1: Detailed data of the curves in Figure 5.3b.

METHOD FINAL ACCURACY Avg. STD

SGD 93.30%± 0.20% 0.93%

M-SGD 94.71%± 0.17% 1.00%

AM1-SGD-I 94.68%± 0.18% 0.59%

AM1-SGD-II 94.62%± 0.15% 0.31%

characterize this deviation by K1(m,Λ) in Theorem 13b with some fixed Λ.

We also plot the convergence of OM-SGD in Figure 5.2a. Interestingly, OM-SGD
performs slightly better in this task: the final accuracies of M-SGD and OM-SGD are
94.61%± 0.15% and 94.73%± 0.11% with average deviations at 1.04% and 0.63%,
respectively.

We do not compare with adaptive methods [39, 72], which scale the gradient
using a diagonal matrix to speed up training. Wilson et al. [150] showed that these
methods always generalize poorly compared with SGD with momentum. We chose
the tasks where Nesterov’s momentum is very effective and popular to conduct our
experiments.

5.5 Experiments

From Theorems 13 and 14, we see that if m is small, the parameters α and β do
not change a lot from the case where m = 1. This inspired us to align (η, β) of
AM1/2-SGD with that of M-SGD and we tune only m. Such a choice facilitates the
usage of AM1/2-SGD. In other words, we used the following parameter settings: η
for SGD, (η, β) for M-SGD and (η, β,m) for AM1/2-SGD.

5.5.1 Parameter Sweep On CIFAR-10

As mentioned in Section 5.3, the practical effect of amortization is undetermined.
Thus, we start with a parameter sweep experiment for m.

In Figure 5.3a, we trained ResNet34 on CIFAR-10 using AM1-SGD with various
m. The experiments were repeated 5 times with different random seeds to measure
the robustness. The convergence behaviors can be found in Appendix D.1.2. Note
that the leftmost points (m = 1) in Figure 5.3a correspond to the results of M-SGD
and OM-SGD, which are already given in Figure 5.2. From this empirical result, we
see that m introduces a trade-off between the final accuracy and robustness while

70 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

0 20 40 60 80
Epoch

45

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y%

ResNet50 on ImageNet

SGD
M-SGD
AM1-SGD
AM2-SGD

0 20 40 60 80
Epoch

45
50
55
60
65
70
75
80

Te
st

 A
cc

ur
ac

y%

ResNet152 on ImageNet

SGD
M-SGD
AM1-SGD
AM2-SGD

METHOD
ImageNet (Final Accuracy)

ResNet50 ResNet152

SGD 72.78%± 0.08% 74.36%± 0.29%

M-SGD 75.71%± 0.06% 78.07%± 0.10%

AM1-SGD 75.78%± 0.11% 77.82%± 0.29%

AM2-SGD 75.85%± 0.07% 78.19%± 0.15%

Figure 5.4 & Table 5.2: ResNet on ImageNet. Run 3 seeds. Shaded bands indicate
±1 standard deviation.

the improvement on the robustness is much more significant than the negative effect
on the final accuracy. Figure 5.3a suggests that m = 5 is a good choice for this
task. For simplicity, and also as a recommended setting, we fix m = 5 for the rest of
experiments in this section.

To provide a stronger justification, we ran 20 seeds with m = 5 in Figure 5.3b
and the detailed data are given in Table 5.1. Recall that Option I omits the tail
averaging at the output point. We can thus understand the gap between two options
as the effect of tail averaging. Since Option I is basically SGD with the amortized
momentum, the results justify that the amortized momentum significantly increases
the robustness. It is interesting that the amortized momentum, while being a very
large momentum, not only provides acceleration, but also helps the algorithm become
more robust than SGD. This observation basically differentiates AM1-SGD from a
simple interpolation in-between M-SGD and SGD.

We measured all the wall-clock times in the experiments. However, we observed
that even on the same type of GPUs, the running times fluctuate a lot and do not
exhibit a clear trend. Roughly speaking, the running time of AM1-SGD (m = 5)
is improved by 2% − 3% compared with M-SGD (measured on the same GPU and
using the same random batches).

We also did a full-batch loss experiment using a smaller ResNet18 with pre-
activation [54]. Since the results resemble Figure 5.3b, we report them in Ap-

5.5. EXPERIMENTS 71

pendix D.1.3.

Learning rate scheduler issue. We observed that when we use schedulers with
a large decay factor and β is too large for the task (e.g., 0.995 for the task of this
section), there would be a performance drop after the learning rate reduction. We
believe that it is caused by the different cardinalities of iterates being averaged in x̃+,
which leads to a false momentum. This issue is resolved by restarting the algorithm
after each learning rate reduction inspired by [115]. We include more discussion and
evidence in Appendix D.1.6.

5.5.2 ImageNet

We trained ResNet50 and ResNet152 [55] on the ILSVRC2012 dataset (“ImageNet”)
[131] shown in Figure 5.4. Here we choose to evaluate Option II for AM1/2-SGD,
which corresponds to the analysis. From the experiments on CIFAR-10, we see that
Option I is basically a “perturbed” version of Option II, while this “perturbation”
could lead to a slightly higher final accuracy (see Table 5.1).

For this task, we used 0.1 initial learning rate and 0.9 momentum for all methods,
which is a typical choice. We performed a restart after each learning rate reduction as
discussed in Appendix D.1.6. We believe that this helps the training process and also
does not incur any additional overhead. We report the final accuracy in Table 5.2.

5.5.3 Language Model

We did a language model experiment on Penn Treebank dataset [99]. We used the
LSTM [56] model defined in Merity et al. [100] and followed the experimental setup
in its released code. We only changed the learning rate and momentum in the setup.
The baseline is SGD+ASGD7 [124] with constant learning rate 30 as used in Merity
et al. [100]. For the choice of (η, β), following Lucas et al. [95], we chose β = 0.99 and
used the scheduler that reduces the learning rate by half when the validation loss has
not decreased for 15 epochs. We swept η from {5, 2.5, 1, 0.1, 0.01} and found that
η = 2.5 resulted in the lowest validation perplexity for M-SGD. We thus ran AM1-
SGD and AM2-SGD (Option II) with this (η, β) and m = 5. Due to the small decay
factor, we did not restart AM1-SGD and AM2-SGD after learning rate reductions.
The convergence of validation perplexity is plotted in Figure 5.5. We report the
lowest validation perplexity and test perplexity in Table 5.3. This experiment is
directly comparable with the one in Lucas et al. [95].

7SGD+ASGD is to run SGD and switch to averaged SGD (ASGD) when a threshold is met.

72 CHAPTER 5. A ROBUST NESTEROV’S MOMENTUM

0 100 200 300 400 500 600 700
Epoch

60

65

70

75

80

Va
lid

at
io

n
Pe

rp
le

xi
ty

LSTM on Penn Treebank
SGD+ASGD
M-SGD
AM1-SGD
AM2-SGD

METHOD
Penn Treebank (Perplexity)

Validation Test

SGD+ASGD 61.28 59.07

M-SGD 60.75 58.36

AM1-SGD 60.73 57.98

AM2-SGD 60.43 58.23

Figure 5.5 & Table 5.3: LSTM on Penn Treebank.

5.6 Chapter Summary

In summary, we list the advantages of AM1-SGD over M-SGD (or from users’ angle,
the benefits of setting m > 1) that are discovered in this section:

(1) Increasing m improves robustness.

(2) Increasing m reduces the (amortized) iteration cost, which is discussed in Ap-
pendix D.1.1.

(3) A suitably chosen m boosts the convergence rate in the early stage of training
and produces comparable final generalization performance.

(4) It is easy and safe to tune m. The performance of AM1-SGD are stable for a
wide range of m.

Some minor drawbacks of AM1-SGD: it requires one more memory buffer, which
is acceptable in most cases, and it shows some undesired behaviors when working
with some learning rate schedulers, which can be addressed by performing restarts.

Extra results are provided in the appendices for interested readers: the robustness
when using large β in Appendix D.1.4, a CIFAR-100 experiment in Appendix D.1.7
and comparison with classical momentum [123], AggMo [95] and QHM [96] in Ap-
pendix D.1.5.

Chapter 6

Neural Network Theory: Finding
Approximately Stationary Points

In this chapter, we consider minimizing an L0-Lipschitz continuous function:

min
x∈Rd

f(x). (6.1)

This problem is motivated by the non-smoothness and non-convexity of neural net-
works using rectified linear units (ReLU) activation. Since this is a rather general
theoretic setting, we cannot hope for very strong convergence results that precisely
capture the empirical behaviors of neural network optimizers. However, given that it
is still unclear what property of neural networks can be used to analyze or construct
algorithms [97, 13], studying this general problem serves as an importance initial
step towards theoretically grounded neural network optimization.

6.1 Prior Arts

It is well-known that solving the general non-convex problem (6.1) is NP-hard. With-
out any additional problem structure, we can only hope for finding a stationary point
of f (i.e., a point where the gradient is small). In f is smooth, we can find a sta-
tionary point ∥∇f(x)∥ ≤ ϵ using GD in O(ϵ−2) gradient oracle calls [102], which is
indeed the optimal complexity [17]. Then how about the non-smooth (L0-Lipschitz)
case? To answer this question, we need to first formally define the notion of gradient
for potentially non-differentiable Lipschitz functions. Clarke subdifferential [21] is a
widely used concept for generalized gradient, which is defined as

∂f(x) ≜ Co{s : ∃x′ → x,∇f(x′) exists ,∇f(x′)→ s},

73

74 CHAPTER 6. FINDING APPROXIMATELY STATIONARY POINTS

where Co{·} is the convex hull of a set of vectors. Given this notion, the ques-
tion now is to find a stationary point with dist(0, ∂f(x)) ≤ ϵ in finite time, where
dist(x, S) ≜ infv∈S ∥v − x∥. Unfortunately, Zhang et al. [155] showed that this goal
is impossible for any first-order method. Naturally, one would consider a weaker
notion of approximate stationarity, and hope that a finite-time complexity is possi-
ble in this case. A somewhat direct approximate stationarity notion is that given
δ > 0, dist(0,∪y∈Bδ(x)∂f(y)) ≤ ϵ, where Bδ(x) ≜ {v : ∥v − x∥ ≤ δ}. This notion in-
dicates that the generalized gradient at some point around x is small, which we call
near-approximate stationarity (NAS). However, Kornowski and Shamir [74] showed
that computing NAS in dimension-independent finite time is impossible.1 Then
what notion of approximate stationarity is computable in finite-time and dimension-
independent complexity? Zhang et al. [155] first pointed out that it is possible for
the notion of Goldstein approximate stationarity (GAS), i.e., dist(0, ∂δf(x)) ≤ ϵ,
where ∂δf(x) ≜ Co{∪y∈Bδ(x)∂f(y)} is called the Goldstein δ-subdifferential [49].
Zhang et al. [155] proposed two algorithms to compute GAS in the deterministic
and stochastic first-order settings. However, their methods are impractical as they
rely on subgradient oracles that are highly nontrivial to compute.

6.2 Perturbed Stochastic INGD

In the work [146] that I coauthored, we resolved the impractical oracle issue of [155]
and proposed the first practical first-order methods that are guaranteed to compute
GAS with finite-time and dimension-independent complexities in deterministic and
stochastic settings. Here I summarize my contribution in this work, which is the
development of the stochastic method (Algorithm 14).

The stochastic first-order oracle is formally defined below, which follows the clas-
sic stochastic approximation oracle [103]. To make the dependence of random vari-
ables explicit, we use σ-field to denote conditional expectation.

Stochastic First-Order Oracle. gx = Os(x): Given a point x, if f is differentiable
at x, then the oracleOs(x) returns a stochastic gradient gx with E

[
gx | σ(x)

]
= ∇f(x)

where we assume that E
[
∥gx −∇f(x)∥2 | σ(x)

]
≤ σ2. Since L0-Lipschitz continuity

implies ∥∇f(x)∥ ≤ L0, we further have E
[
∥gx∥2 | σ(x)

]
≤ L2

0+σ
2 ≜ G2. Otherwise,

the oracle sets error = 1 and terminates the program.

Given a point x, this oracle returns a stochastic gradient if f is differentiable

1As mentioned in the introduction, we would always hope for dimension-free methods in this
big data era.

6.3. FINITE-TIME & DIMENSION-INDEPENDENT GUARANTEE 75

Algorithm 14 Perturbed Stochastic INGD

Input: x1 ∈ Rd at which f is differentiable.

Initialize: m1=g1=Os(x1). Set β=1− ϵ2

64G2 , K= 1
ln 1

β

ln 16G
ϵ
, ω=

(
1

1−β−
1

ln 1
β

)
ln 16G

ϵ
,

p = 64G2

δϵ2
ln 16G

ϵ
, q = 256G3

δϵ2
ln 16G

ϵ
, T =

216G3∆ln 16G
ϵ

ϵ4δ
max{1, Gδ

8∆
}. Set error = 0.

1: for t ∈ [T] do
2: xt+1 = xt − ηtmt, where ηt =

1
p∥mt∥+q .

3: Sample ut+1 ∈ Rd+1 uniformly from Sd.
4: Let vt+1 ∈ Rd be the first d coordinates of ut+1.
5: If ∥mt∥ > 0, bt+1 = vt+1 − ⟨vt+1,xt−xt+1⟩

∥xt−xt+1∥2
· (xt − xt+1); otherwise, bt+1 = vt+1.

6: Sample yt+1 uniformly from [xt, xt+1+ζbt+1], where ζ = min{ω
p
, ϵ2

510q(L0+G)
}.

7: Call oracle gt+1 = Os(yt+1).
8: mt+1 = βmt + (1− β)gt+1.
9: end for

Output: xout ≜ xmax{1,i−K}, where i ∼ Unif([T]).

at x, and reports error otherwise. Clearly, this oracle is practical. The key contri-
bution of our work [146] is that we design a randomized mechanism (marked blue
in Algorithm 14) to ensure that the algorithm will almost never query the oracle
at a non-differentiable point. Without the randomized mechanism, Algorithm 14 is
identical to Zhang et al.’s stochastic algorithm (cf., Algorithm 2 in [155]).

The intuition of this randomized mechanism is that we sample yt+1 from a prob-
ability space with non-zero measure. Then, using Rademacher theorem ([128], The-
orem 9.60), we can guarantee that f is almost surely differentiable at yt+1. See
Lemma 3.2 in our work [146] for the formal proof of this mechanism.

6.3 Finite-Time & Dimension-Independent Guar-

antee

After resolving the practicality issue, we still need to carefully choose the pertur-
bation radius ζ to ensure that the iterates are within the δ-ball of some reference
point without hurting the convergence. Since mt is a weighted average of all the
stochastic gradient, we need to show that it approximately belongs to the Goldstein
δ-subdifferential ∂δf(x) of some reference point x. Moreover, unlike in the determin-
istic case where we can terminate the algorithm if ∥mt∥ (note that mt ∈ ∂δf(xt)) is

76 CHAPTER 6. FINDING APPROXIMATELY STATIONARY POINTS

small, in the stochastic case, mt is a convex combination of stochastic gradients and
thus it does not suffice to terminate the algorithm even if ∥mt∥ = 0. The quantity
that we aim to minimize is its expectation

∥∥E[mt

]∥∥ ≤ E
[
∥mt∥

]
. Due to this sub-

tlety, we cannot let the perturbation size ζt adapt to ∥mt∥ as in the deterministic

case (cf. Algorithm 1 in our work [146]): If ζt =
ω1∥mt∥
p∥mt∥+ω2

for some nonzero ω1 and

ω2 in Algorithm 14, then when ∥mt∥ = 0, we have yt+1 = xt+1 = xt, and we cannot
ensure that f is differentiable at xt almost surely. We choose a constant ζt ≡ ζ in
Algorithm 14 instead. In this case, when ∥mt∥ = 0, yt+1 is sampled from a ball
centered at xt.

After dealing with these technical subtleties, we formally establish the conver-
gence guarantee of Algorithm 14 as follows. The proof is provided in Appendix E.1.

Theorem 15. Let f be L0-Lipschitz continuous. With probability at least 3
5
, the

output of Algorithm 14 satisfies dist
(
0, ∂δf(xout)

)
≤ ϵ after at most

Õ

(
G3∆

ϵ4δ

)
oracle calls

and with P(error = 1) = 0, where f(x0)− infx∈Rd f(x) ≤ ∆ and Õ(·) hides logarith-
mic factors.

About the Constant Probability. Currently we are not sure how to establish
a high-probability result in the stochastic case.2 We probably need to truncate the
vector mt in Algorithm 14 similar to the gradient clipping strategy in [101]. This
modification is leave for future work.

About the Empirical Performance. We did some preliminary neural network
experiments to evaluate Algorithm 14. However, the performance is not quite promis-
ing compared with the state-of-the-art neural network optimizers. This is in fact
within our expectations. Our primary goal is to build theoretically grounded meth-
ods, but not ones with improved convergence rates. Due to this reason, the experi-
ments are omitted here.

2Zhang et al. [155] claimed that their Algorithm 2 computes GAS in high probability by re-
peatedly restarting their Algorithm 2, which is wrong since we cannot determine the smallest
dist

(
0, ∂δf(xout)

)
after several restarts (this distance is in general not computable).

Chapter 7

Conclusion

In this thesis, we proposed several new algorithms that have the properties of fast,
practical and scalable. Specifically,

• In Chapter 2, we discovered 4 theoretically fastest methods for various strongly
convex finite-sum problems, whose derivation is based on a novel shifting theory
inspired by the PEP methodology.

• In Chapter 3, we systematically studied the problem of finding near-stationary
points in convex finite-sum problems, and derived 3 new practical schemes
based on novel usages of the PEP methodology.

• Inspired by the development in Chapter 3, in Chapter 4, we discovered the first
asynchronous lock-free algorithm with the optimal gradient complexity—a fast
and scalable method which fully utilizes the parallel computing architectures.

• In Chapter 5, we focused on the challenging neural network optimization, and
proposed 2 novel robust momentum methods, which are inspired by the accel-
eration tricks developed in Chapter 2.

• Finally, in Chapter 6, we built the first practical stochastic first-order method
that is guaranteed to compute GAS of general neural networks with finite-
time and dimension-independent complexity, thus making an important step
towards theoretically grounded neural network optimization.

Here we list some potential future directions:

1. Currently, the PEP methodology only works for first-order methods and mostly
under the smooth convex setting. It is natural to ask if we can extend PEP to

77

78 CHAPTER 7. CONCLUSION

analyze or inspire second-order methods, and whether it is possible to consider
weakly convex / quasiconvex / non-smooth settings.

2. There is still a gap in the complexities of finding near stationary points with
stochastic gradients in Chapter 3. Is it possible to close the gap? That is, to
find a stochastic method that has a convergence rate matching the lower bound,
or to derive a better lower bound that matches the existing upper bounds.

3. How to extend the optimal asynchronous lock-free method in Chapter 4 to the
proximal (or composite) setting [117]?

4. Can we analyze the convergence of AM1/2-SGD proposed in Chapter 5 in the
non-convex case? Can we establish an enhanced robustness in theory?

5. Is the iteration complexity of perturbed stochastic INGD in Chapter 6 optimal?
Can we establish a lower bound in the stochastic setting?

6. Is there any common property of general neural networks that can be leveraged
for algorithm analysis or design?

Appendix A

Appendix for Chapter 2

A.1 Technical Lemmas with Proofs

Lemma 1 (Shifted mirror descent lemma). Given a gradient estimator Gy, vec-

tors z+, z−, y ∈ Rd, fix the updating rule z+ = argminx
{
⟨Gy, x⟩ + α

2
∥x− z−∥2 +

µ
2
∥x− y∥2

}
. Suppose that we have a shifted gradient estimator Hy satisfying the

relation Hy = Gy − µ(y − x⋆), it holds that

〈
Hy, z

− − x⋆
〉
=
α

2

(∥∥z− − x⋆∥∥2 − (1 + µ

α

)2 ∥∥z+ − x⋆∥∥2)+
1

2α
∥Hy∥2 .

Proof. Using the optimality condition,

Gy + α(z+ − z−) + µ(z+ − y) = 0,

Hy + α(z+ − z−) + µ(z+ − x⋆) = 0,

(α + µ)(z+ − x⋆) = α(z− − x⋆)−Hy,

(α + µ)2
∥∥z+ − x⋆∥∥2 = α2

∥∥z− − x⋆∥∥2 − 2α
〈
Hy, z

− − x⋆
〉
+ ∥Hy∥2 .

Re-arranging the last equality completes the proof.

Lemma 2 (Shifted firm non-expansiveness). Given relations z+ = proxαi (z
−) and

y+ = proxαi (y
−), it holds that

1

α2

(
1 +

2(α + µ)

L− µ

)∥∥∇hi(z+)−∇hi(y+)∥∥2 + (1 + µ

α

)2 ∥∥z+ − y+∥∥2 ≤ ∥∥z− − y−∥∥2 .
79

80 APPENDIX A. APPENDIX FOR CHAPTER 2

Proof. Based on the first-order optimality condition and the definition of hi,

∇fi(z+) + α(z+ − z−) = 0, ∇fi(y+) + α(y+ − y−) = 0,

∇hi(z+) +∇fi(x⋆) + µ(z+ − x⋆) + α(z+ − z−) = 0,

∇hi(y+) +∇fi(x⋆) + µ(y+ − x⋆) + α(y+ − y−) = 0.

Subtract the last two equalities,

(α + µ)(z+ − y+) = α(z− − y−)−
(
∇hi(z+)−∇hi(y+)

)
, (A.1)

which implies

(α + µ)2
∥∥z+ − y+∥∥2 = α2

∥∥z− − y−∥∥2 − 2α
〈
∇hi(z+)−∇hi(y+), z− − y−

〉
+
∥∥∇hi(z+)−∇hi(y+)∥∥2 . (A.2)

Based on the interpolation condition of hi, we have

〈
∇hi(z+)−∇hi(y+), z+ − y+

〉
≥ 1

L− µ
∥∥∇hi(z+)−∇hi(y+)∥∥2 .

Together with (A.1), it holds that

〈
∇hi(z+)−∇hi(y+), z− − y−

〉
≥ 1

α

(
1 +

α + µ

L− µ

)∥∥∇hi(z+)−∇hi(y+)∥∥2 .
It remains to use this bound in (A.2).

Forming convex combination between vector sequences is a common technique in
designing accelerated methods (e.g., [9, 78, 46, 4]). From an analytical perspective,
convex combination facilitates building a contraction between function values and
the coefficient directly controls the contraction ratio, which is summarized in the
following lemma. Unlike previous works, we allow a residual term R in the convex
combination.

Lemma 3 (Function-value contraction). Given a continuously differentiable and con-
vex function f , vectors x+, x−, z,R ∈ Rd and scalar τ ∈]0, 1[, if x+ = τz+(1−τ)x−+
R, it satisfies that

f(x+)− f(x⋆) ≤ (1− τ)
(
f(x−)− f(x⋆)

)
+
〈
∇f(x+),R

〉
+ τ

〈
∇f(x+), z − x⋆

〉
.

A.2. PROOFS OF SECTION 2.3 81

Proof. Using convexity twice,

f(x+)− f(x⋆) ≤
〈
∇f(x+), x+ − x⋆

〉
=
〈
∇f(x+), x+ − z

〉
+
〈
∇f(x+), z − x⋆

〉
=

1− τ
τ

〈
∇f(x+), x− − x+

〉
+

1

τ

〈
∇f(x+),R

〉
+
〈
∇f(x+), z − x⋆

〉
≤ 1− τ

τ

(
f(x−)− f(x+)

)
+

1

τ

〈
∇f(x+),R

〉
+
〈
∇f(x+), z − x⋆

〉
.

Re-arranging this inequality completes the proof.

This simple trick (with R = 0) appears frequently in the proofs of existing
accelerated first-order methods. Note that the convexity arguments in this lemma
can be strengthened by the interpolation condition or strong convexity if f satisfies
additional assumptions.

A.2 Proofs of Section 2.3

A.2.1 Generality of the Framework of Algorithm 1

First, we show that TM is a parameterization of NAG (Algorithm 16 in Appendix A.6).
Note that TM has the following scheme (the notations follow the ones in Cyrus et al.
[24]):

xk+1 = xk + β(xk − xk−1)− α∇f(yk),
yk+1 = xk+1 + γ(xk+1 − xk),
zk+1 = xk+1 + δ(xk+1 − xk).

By casting this scheme into the framework of Algorithm 16, we obtain

yk =
γ

δ
zk +

(
1− γ

δ

)
xk,

zk+1 =
β(1 + δ)− γ

δ − γ
zk +

δ − β(1 + δ)

δ − γ
yk − α(1 + δ)∇f(yk),

xk+1 =
1

1 + δ
zk+1 +

δ

1 + δ
xk.

Substituting the parameter choice of TM, we see that TM is equivalent to choosing
α =
√
Lµ−µ, τy = (

√
κ+1)−1, τx =

2
√
κ−1
κ

in Algorithm 16. Interestingly, this choice
and the choice of NAG (given in Appendix A.6) only differ in τx.

82 APPENDIX A. APPENDIX FOR CHAPTER 2

Then, we show that Algorithm 16 is an instance of the framework of Algorithm 1.
By expanding the convex combinations of sequences {yk} and {xk} in Algorithm 16,
we can conclude that

yk = τxzk + (1− τx)yk−1 + τy(1− τx)(zk − zk−1).

Based on the optimality condition at iteration k − 1, we have

α(zk − zk−1) = µ(yk−1 − zk)−∇f(yk−1).

Now, it is clear that Algorithm 16 is an instance of the framework of Algorithm 1
with the variable-parameter choice (let y−1 = x0): at k = 0, τx0 = τy, τ

z
0 = 0; at

k ≥ 1, τxk = τx, τ
z
k = τy(1−τx)

α
.

A.2.2 Proof of Theorem 1

First, we can introduce a contraction between h(yk) and h(yk−1) using Lemma 3.
Applying Lemma 3 with f = h for the recursion yk = τxk zk+(1−τxk)yk−1+τ

z
k

(
µ(yk−1−

zk) − ∇f(yk−1)
)
and strengthening the convexity arguments by the interpolation

condition, we obtain

h(yk)

≤ (1− τxk)h(yk−1) + τ zk ⟨∇h(yk), µ(yk−1 − zk)−∇f(yk−1)⟩+ τxk ⟨∇h(yk), zk − x⋆⟩

− τxk
2(L− µ)

∥∇h(yk)∥2 −
1− τxk

2(L− µ)
∥∇h(yk−1)−∇h(yk)∥2 .

Note that µ(yk−1 − zk) − ∇f(yk−1) = µ(x⋆ − zk) − ∇h(yk−1) by definition, and
thus

h(yk)

≤ (1− τxk)h(yk−1)− τ zk ⟨∇h(yk),∇h(yk−1)⟩+ (τxk − µτ zk) ⟨∇h(yk), zk − x⋆⟩

− τxk
2(L− µ)

∥∇h(yk)∥2 −
1− τxk

2(L− µ)
∥∇h(yk−1)−∇h(yk)∥2 .

(A.3)

Then, to build a contraction between ∥zk+1 − x⋆∥2 and ∥zk − x⋆∥2, we apply
Lemma 1 with Gy = ∇f(yk),Hy = ∇h(yk) and z+ = zk+1, which gives

⟨∇h(yk), zk − x⋆⟩ =
αk
2

(
∥zk − x⋆∥2 −

(
1 +

µ

αk

)2

∥zk+1 − x⋆∥2
)

+
1

2αk
∥∇h(yk)∥2 .

A.2. PROOFS OF SECTION 2.3 83

Using this relation in (A.3), expanding and re-arranging the terms, we conclude
that

h(yk)−
(
τxk −µτ zk
2αk

− 1

2(L− µ)

)
∥∇h(yk)∥2+

αk(τ
x
k −µτ zk)
2

(
1 +

µ

αk

)2

∥zk+1−x⋆∥2

≤ (1− τxk)
(
h(yk−1)−

1

2(L− µ)
∥∇h(yk−1)∥2

)
+
αk(τ

x
k − µτ zk)
2

∥zk − x⋆∥2

+

(
1− τxk
L− µ

− τ zk
)
⟨∇h(yk),∇h(yk−1)⟩ .

It remains to impose parameter constraints according to the Lyapunov function.

A.2.3 Proof of Proposition 1.1

First, we can write the kth-update of G-TM with constant parameter as

yk = (τx − τzµ)zk +
(
1− (τx − τzµ)

)
yk−1 − τz∇f(yk−1),

zk+1 =
α

α + µ
zk +

µ

α + µ
yk −

1

α + µ
∇f(yk).

Substituting the constant parameter choice, we obtain

yk =
2√
κ+ 1

zk +

√
κ− 1√
κ+ 1

(
yk−1 −

1

L
∇f(yk−1)

)
,

zk+1 =

(
1− 1√

κ

)
zk +

1√
κ
yk −

1√
Lµ
∇f(yk).

For the objective function f(x) = 1
2

〈[
L 0
0 µ

]
x, x

〉
, the update can be further

expanded as

yk =
2√
κ+ 1

zk +

[
0 0

0 (
√
κ−1)2

κ

]
yk−1,

zk+1 =

(
1− 1√

κ

)
zk +

[
−κ−1√

κ
0

0 0

]
yk.

Thus,

zk+1 =

(
1− 1√

κ

)[
−1 0
0 1

]
zk =⇒ ∥zk+1 − x⋆∥2 =

(
1− 1√

κ

)2

∥zk − x⋆∥2 ,

as desired.

84 APPENDIX A. APPENDIX FOR CHAPTER 2

A.3 Proofs of Section 2.4

A.3.1 Proof of Theorem 2

For simplicity of presentation, we omit the superscript s for iterates in the same
epoch.

Using the trick in Lemma 3 for the recursion

yk = τxzk + (1− τx) x̃s + τz (µ(x̃s − zk)−∇f(x̃s))

and strengthening the convexity arguments by interpolation condition, we obtain

h(yk) ≤
1− τx
τx
⟨∇h(yk), x̃s − yk⟩+

τz
τx
⟨∇h(yk), µ(x̃s − zk)−∇f(x̃s)⟩

+ ⟨∇h(yk), zk − x⋆⟩ −
1

2(L− µ)
∥∇h(yk)∥2 .

Note that here the inner product ⟨∇h(yk), x̃s − yk⟩ is not upper bounded as before.
This term is preserved to deal with the variance.

By the definition of h, µ(x̃s − zk) − ∇f(x̃s) = µ(x⋆ − zk) − ∇h(x̃s). Applying
Lemma 1 with Hy = HSVRG

yk
,Gy = GSVRG

yk
, z+ = zk+1 and taking the expectation, we

can conclude that

h(yk) ≤
1− τx
τx
⟨∇h(yk), x̃s − yk⟩ −

τz
τx
⟨∇h(yk),∇h(x̃s)⟩ −

1

2(L− µ)
∥∇h(yk)∥2

+

(
1− µτz

τx

)
α

2

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+

(
1

2α
− µτz

2ατx

)
Eik
[∥∥HSVRG

yk

∥∥2] .
To bound the shifted moment, we apply the interpolation condition of hik , i.e.,

Eik
[∥∥HSVRG

yk

∥∥2] = Eik
[
∥∇hik(yk)−∇hik(x̃s)∥

2]+ 2 ⟨∇h(yk),∇h(x̃s)⟩ − ∥∇h(x̃s)∥2

≤ 2(L− µ)
(
h(x̃s)− h(yk)− ⟨∇h(yk), x̃s − yk⟩

)
+ 2 ⟨∇h(yk),∇h(x̃s)⟩ − ∥∇h(x̃s)∥2 .

A.3. PROOFS OF SECTION 2.4 85

After re-arranging the terms, we obtain

h(yk) ≤
(
1− µτz

τx

)
L− µ
α

(
h(x̃s)− h(yk)

)
+

[
1− τx
τx

−
(
1− µτz

τx

)
L− µ
α

]
⟨∇h(yk), x̃s − yk⟩

+

(
1− µτz

τx

)
α

2

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+

(
1

α
− µτz
ατx
− τz
τx

)
⟨∇h(yk),∇h(x̃s)⟩ −

1

2(L− µ)
∥∇h(yk)∥2

−
(

1

2α
− µτz

2ατx

)
∥∇h(x̃s)∥2 .

To cancel ⟨∇h(yk), x̃s − yk⟩, we choose τz such that 1−τx
τx

=
(
1− µτz

τx

)
L−µ
α

, which

gives

h(yk) ≤ (1−τx)h(x̃s) +
α2(1−τx)
2(L−µ)

(
∥zk−x⋆∥2−

(
1+

µ

α

)2
Eik
[
∥zk+1−x⋆∥2

])
+
α + µ− (α + L)τx

(L− µ)µ
⟨∇h(yk),∇h(x̃s)⟩ −

τx
2(L− µ)

∥∇h(yk)∥2

− 1− τx
2(L− µ)

∥∇h(x̃s)∥2 .

(A.4)

In view of the Lyapunov function Ts ≜ h(x̃s)− c1 ∥∇h(x̃s)∥2+ λ
2
∥zs0 − x⋆∥

2, there
are two ways to deal with the inner product ⟨∇h(yk),∇h(x̃s)⟩:
Case I (c1 = 0): Choosing τx such that α + µ − (α + L)τx = 0 =⇒ τx = α+µ

α+L
and

dropping the negative gradient norms in (A.4), we arrive at (A.6) with c1 = 0.

Case II (c1 ̸= 0): Denoting γ = |α+µ−(α+L)τx|
(L−µ)µ and using Young’s inequality for

⟨∇h(yk),∇h(x̃s)⟩ with parameter β > 0, we can bound (A.4) as

h(yk) ≤ (1−τx)h(x̃s) +
α2(1−τx)
2(L−µ)

(
∥zk−x⋆∥2−

(
1+

µ

α

)2
Eik
[
∥zk+1−x⋆∥2

])
+

(
βγ

2
− τx

2(L− µ)

)
∥∇h(yk)∥2 −

(
1− τx

2(L− µ)
− γ

2β

)
∥∇h(x̃s)∥2 .

(A.5)

We require γ ̸= 0 and choose β > 0 such that

βγ

2
− τx

2(L− µ)
=

1

1− τx

(
1− τx

2(L− µ)
− γ

2β

)
= c1 > 0.

86 APPENDIX A. APPENDIX FOR CHAPTER 2

It can be verified that this requirement and the existence of β are equivalent to
the following constraints: τx ̸= α+µ

α+L
,

(1 + τx)
2(1− τx) ≥ 4

((
α
µ
+ 1
)
−
(
α
µ
+ κ
)
τx

)2
.

Under these constraints, denoting ∆ = (1+τx)2

(L−µ)2 −
4γ2

1−τx ≥ 0, we can choose β =

1+τx
2γ(L−µ) +

√
∆

2γ
, which ensures c1 ∈

]
0, 1

2(L−µ)

[
.

Let c2 ≜
α2(1−τx)
L−µ . These two cases result in the same inequality:

h(yk)− c1 ∥∇h(yk)∥2 ≤ (1− τx)
(
h(x̃s)− c1 ∥∇h(x̃s)∥2

)
+
c2
2

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
.
(A.6)

Finally, summing the above inequality from k = 0, . . . ,m−1 with weight
(
1 + µ

α

)2k
,

we conclude that

E
[
h(x̃s+1)− c1 ∥∇h(x̃s+1)∥2

]
=

m−1∑
k=0

1

ω̃

(
1 +

µ

α

)2k
E
[
h(ysk)− c1 ∥∇h(ysk)∥

2]
≤ (1− τx)

(
h(x̃s)− c1 ∥∇h(x̃s)∥2

)
+
c2
2ω̃

(
∥zs0 − x⋆∥

2 −
(
1 +

µ

α

)2m
E
[
∥zsm − x⋆∥

2]) .
(A.7)

Imposing the constraint
(
1 + µ

α

)2m
(1− τx) ≤ 1 completes the proof.

A.3.2 Proof of Proposition 2.1

The choice {
α =
√
cmµL− µ,

τx =
(
1− 1

cκ

)
α+µ
α+L

=
(
1− 1

cκ

) √
cmκ√

cmκ+κ−1
,

and the constraints

(1 + τx)
2(1− τx) ≥ 4

((
α

µ
+ 1

)
−
(
α

µ
+ κ

)
τx

)2

, (A.8)(
1 +

µ

α

)2m
(1− τx) ≤ 1, (A.9)

A.3. PROOFS OF SECTION 2.4 87

are put here for reference.
Note that for m ∈

(
0, 3

4
κ
]
, τx = cκ−1

cκ+
√

cκ
m

(κ−1)
increases monotonically and 1+τx

m

decreases monotonically as m increases. Thus, for the constraint (A.8), letting

ϕ(m,κ) ≜
(1 + τx)

2(1− τx)((
α
µ
+ 1
)
−
(
α
µ
+ κ
)
τx

)2 =
1 + τx
m

(
1− τ 2x

)
cκ,

we have ϕ(m,κ) decreases monotonically as m increases.

When m = 3
4
κ, τx = cκ−1(

c+
√

4c
3

)
κ−
√

4c
3

. For κ ≥ 1, if c +
√

4c
3
− c
√

4c
3
≤ 0 ⇔ c ≥

(
√
3+

√
19)2

16
≈ 2.319, we have τx decreases monotonically as κ increases. In this case,

letting κ→∞, we conclude that τx >
c

c+
√

4c
3

> 1
3
, which implies that (1+τx)

2(1−τx)
increases monotonically as τx decreases. Thus,

ϕ(m,κ) ≥ ϕ

(
3

4
κ, κ

)
≥ ϕ

(
3

4
, 1

)
=

4

3

(
1 +

c− 1

c

)(
1−

(
c− 1

c

)2
)
c.

To meet the constraint (A.8), we require c ≥ 2 +
√
3 ≈ 3.74.

For constraint (A.9), defining

ψ(m,κ) ≜

(
α + µ

α

)2m

(1− τx) =
(
1 +

1√
cmκ− 1

)2m √
cmκ+ cκ(κ− 1)

(
√
cmκ− 1 + κ)cκ

,

we have ∂ψ
∂m

=(
1 +

1√
cmκ− 1

)2m
[(

2 ln

(
1 +

1√
cmκ− 1

)
− 1√

cmκ− 1

) √
cmκ+ cκ(κ− 1)

(
√
cmκ− 1 + κ)cκ

− (κ− 1)(cκ− 1)

2
√
cmκ

(√
cmκ− 1 + κ

)2
]
.

Denote q =
√
cmκ − 1 > 0. The roots of ∂ψ

∂m
are identified by the following

equation:

s(q) ≜ 2 ln

(
1 +

1

q

)
− 1

q
− b0

(q + 1)(q + κ)(q + b1)
= 0,

where b0 =
cκ
2
(κ−1)(cκ−1), b1 = 1+ cκ(κ−1). Taking derivative, we see that when

q → 0, s′(q) ≥ 1
q2
− 2

q(1+q)
→ ∞. We can arrange the equation s′(q) = 0 as finding

88 APPENDIX A. APPENDIX FOR CHAPTER 2

the real roots of a polynomial. By Descartes’ rule of signs, this equation has exactly
one positive root (with c ≥ 2+

√
3, we have κb1− 1− b0 ≤ 0 for any κ ≥ 1 and then

there is exactly one sign change in the polynomial). Thus, as q increases, s(q) first
increases monotonically to the unique root and then decreases monotonically.

To see that s(q) has exactly one root, let q → 0, s(q) ≤ 2 ln
(
1 + 1

q

)
− 1

q
→ −∞;

when q is large enough (e.g., q > 2 and (q + κ)(q + b1) > 2b0), s(q) > 0; let
q → ∞, s(q) → 0. These facts suggest that s(q) has a unique root. Thus, we
conclude that, as m increases, ψ(m,κ) first decreases monotonically to the unique
root and then increases monotonically, which means that for m ∈ [2, 3

4
κ], ψ(m,κ) ≤

max
{
ψ(2, κ), ψ

(
3
4
κ, κ
)}

.

For ψ(2, κ), ψ′(2, κ) =
(
1 + 1√

2cκ−1

)4 (√
2cκ+ κ− 1

)−2 (√
2cκ− 1

)−1
ℓ(κ), where

ℓ(κ) is a polynomial:

ℓ(κ) ≜ (c− 2)κ− 5
√
2c

2
κ

1
2 + (c+ 1)−

(√
c

2
+

1√
2c

)
κ−

1
2 − 3κ−1 +

3√
2c
κ−

3
2 .

It can be verified that with c ≥ 2 +
√
3, for any κ ≥ 8

3
, ℓ′(κ) > 0, which suggests

that ψ(2, κ) ≤ max
{
ψ
(
2, 8

3

)
, ψ(2,∞)

}
≤ 1 (with c ≥ 2 +

√
3, ψ

(
2, 8

3

)
≤ 0.953 and

ψ (2,∞) = 1).

For ψ
(
3
4
κ, κ
)
, ψ′ (3

4
κ, κ
)
=
(
1 + 2√

3cκ−2

) 3
2
κ ((

c+
√

4c
3

)
κ−

√
4c
3

)−1

ω1(κ), where

ω1(κ)

≜

(
ln

(
1 +

2√
3cκ− 2

)
− 2√

3cκ− 2

)(√
3cκ−

√
3c+

3

2

)
+

√
4c
3
c− c−

√
4c
3(

c+
√

4c
3

)
κ−

√
4c
3

.

Let p =
√
3cκ− 2 > 0, the roots of ω1(κ) are determined by the equation

ω2(p) ≜ ln

(
1 +

2

p

)
− 2

p
+

3
2+

√
3c

(√
4c
3
c− c−

√
4c
3

)
(
p+ 4

2+
√
3c

) (
p+ 7

2
−
√
3c
) = 0.

To ensure that ω2(p) increases monotonically as p increases, it suffices to set c ≤ 3.817
(which ensures that ω′

2(p) > 0). Thus, for any p > 0, ω2(p) ≤ limp→∞ ω2(p) = 0 ⇒
for any κ ≥ 1, ω1(κ) ≤ 0. Finally, we conclude that with 3.817 ≥ c ≥ 2 +

√
3,

ψ
(
3
4
κ, κ
)
≤ ψ

(
2, 8

3

)
≤ 0.953, which completes the proof.

A.3. PROOFS OF SECTION 2.4 89

A.3.3 Proof of Proposition 2.2

The choice

{
α = 3L

2
− µ,

τx =
(
1− 1

6m

)
α+µ
α+L

=
(
1− 1

6m

)
3κ

5κ−2
,

is put here for reference.

We examine the constraint (1 + τx)
2(1− τx) ≥ 4

((
α
µ
+ 1
)
−
(
α
µ
+ κ
)
τx

)2
. Let

ϕ(m,κ) ≜
(1 + τx)

2(1− τx)

4
((

α
µ
+ 1
)
−
(
α
µ
+ κ
)
τx

)2 =
(1 + τx)

2(1− τx)4m2

κ2
.

For m ≥ 3
4
κ, we have τx and (1 − τx)m increases monotonically as m increases.

Thus, ϕ(m,κ) increases as m increases =⇒ ϕ(m,κ) ≥ ϕ(3
4
κ, κ).

ϕ(3
4
κ, κ) = 9

4
(1 + τx)

2(1 − τx) and τx = 9κ−2
15κ−6

in this case. Note that for κ ≥ 1,

τx decreases as κ increases and let κ → ∞, we conclude that τx > 3
5
> 1

3
=⇒

(1+τx)
2(1−τx) increases as τx decreases. Thus, ϕ(34κ, κ) ≥ ϕ(3

4
, 1) > 1, the constraint

is satisfied.

Using this choice, we can write the per-epoch contraction (A.7) in Theorem 2 as

E
[
h(x̃s+1)− c1 ∥∇h(x̃s+1)∥2

]
+
α2(1− τx)
2ω̃(L− µ)

(
1 +

µ

α

)2m
E
[∥∥zs+1

0 − x⋆
∥∥2]

≤ (1− τx)
(
h(x̃s)− c1 ∥∇h(x̃s)∥2

)
+
α2(1− τx)
2ω̃(L− µ)

∥zs0 − x⋆∥
2 .

Note that for m
κ
> 3

4
, τx >

1
2
and by Bernoulli’s inequality,

(
1 + µ

α

)2m ≥ 1+ 2mµ
α

=

1 + 4m
3κ−2

> 2. Let λ = 2α2(1−τx)
ω̃(L−µ) . The above contraction becomes

E
[
h(x̃s+1)− c1 ∥∇h(x̃s+1)∥2

]
+
λ

2
E
[∥∥zs+1

0 − x⋆
∥∥2]

≤ 1

2
·
(
h(x̃s)− c1 ∥∇h(x̃s)∥2 +

λ

2
∥zs0 − x⋆∥

2

)
.

Telescoping this inequality from S − 1 to 0, we obtain TS ≤ 1
2S
T0, and since

m = 2n, these imply an O(n log 1
ϵ
) iteration complexity.

90 APPENDIX A. APPENDIX FOR CHAPTER 2

Algorithm 15 SAGA Boosted by Shifting objective (BS-SAGA)

Input: Parameters α > 0, τx ∈]0, 1[and initial guess x0 ∈ Rd, iteration number K.

Initialize: z0 = x0, τz =
τx
µ
− α(1−τx)

µ(L−µ) , a point table ϕ0 ∈ Rd×n with ∀i ∈ [n], ϕ0
i = x0,

running averages for the point table and its gradients.
1: for k = 0, . . . , K − 1 do
2: Sample ik uniformly in [n], set ϕk+1

ik
= τxzk + (1− τx)ϕkik + τz

(
µ(ϕ̄k − zk) −

1
n

∑n
i=1∇fi(ϕki)

)
and keep other entries unchanged (i.e., for i ̸= ik, ϕ

k+1
i = ϕki).

3: zk+1 = argminx

{〈
GSAGA
ϕk+1
ik

, x
〉
+ (α/2) ∥x− zk∥2 + (µ/2)

∥∥x− ϕk+1
ik

∥∥2 }.
4: Update the running averages according to the change in ϕk+1.
5: end for

Output: zK .

A.3.4 BS-SAGA

To make the notations specific, we define

HSAGA
xk

≜ ∇hik(xk)−∇hik(ϕkik) +
1

n

n∑
i=1

∇hi(ϕki)

⇒ GSAGA
xk

≜ ∇fik(xk)−∇fik(ϕkik) +
1

n

n∑
i=1

∇fi(ϕki)− µ
(
ϕ̄k − ϕkik

)
,

where ϕk ∈ Rd×n is a point table that stores n previously chosen random anchor
points and ϕ̄k ≜ 1

n

∑n
i=1 ϕ

k
i denotes the average of point table.

The Lyapunov function (with c1 ∈
[
0, 1

2(L−µ)

]
, λ > 0) is put here for reference:

Tk =
1

n

n∑
i=1

hi(ϕ
k
i)− c1

∥∥∥∥∥ 1n
n∑
i=1

∇hi(ϕki)

∥∥∥∥∥
2

+
λ

2
∥zk − x⋆∥2 . (A.10)

We present the SAGA variant in Algorithm 15. In the following theorem, we only
consider a simple case with c1 = 0 in Tk. It is possible to analyze BS-SAGA with
c1 ̸= 0 as is the case for BS-SVRG (the analysis in Appendix A.3.1). However, it
leads to highly complicated parameter constraints. We provide a simple parameter
choice similar to the one in Proposition 2.3.

Theorem A.3.1. In Algorithm 15, if we choose α, τx as{
α is solved from the equation

(
1 + µ

α

)2 (
1− α+µ

(α+L)n

)
= 1,

τx =
α+µ
α+L

,
(A.11)

A.3. PROOFS OF SECTION 2.4 91

the following per-iteration contraction holds for the Lyapunov function defined at
(A.10) (with c1 = 0).

With λ =
(1− τx) (α + µ)2

(L− µ)n
, Eik [Tk+1] ≤

(
1 +

µ

α

)−2

Tk, for k ≥ 0.

Regrading the rate, from (A.11), we can figure out that α is the unique positive
root of the cubic equation:(

α

µ

)3

− (2n− 3)

(
α

µ

)2

− (2nκ+ n− 3)

(
α

µ

)
− (nκ− 1) = 0.

Using a similar argument as in Theorem 3, we can show that α
µ
= O(n+

√
nκ), and

thus conclude an O
(
(n +

√
nκ) log 1

ϵ

)
expected complexity for BS-SAGA. Interest-

ingly, this rate is always slightly slower than that of BS-Point-SAGA.

Proof of Theorem A.3.1

To simplify the notations in this proof, we let Φk ≜ 1
n

∑n
i=1 hi(ϕ

k
i) and ∇Φk ≜

1
n

∑n
i=1∇hi(ϕki).
Using the trick in Lemma 3 (with f = hik) for ϕ

k+1
ik

, strengthening the convexity
with the interpolation condition and taking the expectation, we obtain

Eik
[
hik(ϕ

k+1
ik

)
]
≤ 1− τx

τx
Eik
[〈
∇hik(ϕk+1

ik
), ϕkik − ϕ

k+1
ik

〉]
+ Eik

[〈
∇hik(ϕk+1

ik
), zk − x⋆

〉]
+
τz
τx
Eik

[〈
∇hik(ϕk+1

ik
), µ(ϕ̄k − zk)−

1

n

n∑
i=1

∇fi(ϕki)

〉]
− 1

2(L− µ)
Eik
[∥∥∇hik(ϕk+1

ik
)
∥∥2] .

Note that by the definition of hi, µ(ϕ̄
k−zk)− 1

n

∑n
i=1∇fi(ϕki) = µ(x⋆−zk)−∇Φk,

and thus

Eik
[
hik(ϕ

k+1
ik

)
]
≤ 1− τx

τx
Eik
[〈
∇hik(ϕk+1

ik
), ϕkik − ϕ

k+1
ik

〉]
− τz
τx
Eik
[〈
∇hik(ϕk+1

ik
),∇Φk

〉]
+

(
1− µτz

τx

)
Eik
[〈
∇hik(ϕk+1

ik
), zk − x⋆

〉]
− 1

2(L− µ)
∥∥Eik [∇hik(ϕk+1

ik
)
]∥∥2 ,

(A.12)

92 APPENDIX A. APPENDIX FOR CHAPTER 2

which also uses Jensen’s inequality, i.e., Eik
[∥∥∇hik(ϕk+1

ik
)
∥∥2] ≥ ∥∥Eik [∇hik(ϕk+1

ik
)
]∥∥2.

Using Lemma 1 with Hy = HSAGA
ϕk+1
ik

,Gy = GSAGA
ϕk+1
ik

, z+ = zk+1 and taking the expec-

tation, we obtain

Eik
[〈
∇hik(ϕk+1

ik
), zk − x⋆

〉]
=
α

2

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+

1

2α
Eik

[∥∥∥∥HSAGA
ϕk+1
ik

∥∥∥∥2
]
.

(A.13)

Using the interpolation condition of hik to bound the stochastic moment,

Eik

[∥∥∥∥HSAGA
ϕk+1
ik

∥∥∥∥2
]

= Eik
[∥∥∇hik(ϕk+1

ik
)−∇hik(ϕkik)

∥∥2]+ 2Eik
[〈
∇hik(ϕk+1

ik
),∇Φk

〉]
−
∥∥∇Φk

∥∥2
≤ 2(L− µ)

(
Φk − Eik

[
hik(ϕ

k+1
ik

)
]
− Eik

[〈
∇hik(ϕk+1

ik
), ϕkik − ϕ

k+1
ik

〉])
(A.14)

+ 2Eik
[〈
∇hik(ϕk+1

ik
),∇Φk

〉]
−
∥∥∇Φk

∥∥2 .
Based on the updating rules of ϕk+1, the following relations hold

Eik
[
Φk+1

]
=

1

n
Eik
[
hik(ϕ

k+1
ik

)
]
+
n− 1

n
Φk, (A.15)

Eik
[
∇Φk+1

]
=

1

n
Eik
[
∇hik(ϕk+1

ik
)
]
+
n− 1

n
∇Φk, (A.16)

where (A.16) implies that

∥∥Eik [∇hik(ϕk+1
ik

)
] ∥∥2 = n2

∥∥Eik [∇Φk+1
]∥∥2 − 2(n2 − n)

〈
Eik
[
∇Φk+1

]
,∇Φk

〉
+ (n− 1)2

∥∥∇Φk
∥∥2 , (A.17)

Eik
[〈
∇hik(ϕk+1

ik
),∇Φk

〉]
= n

〈
Eik
[
∇Φk+1

]
,∇Φk

〉
− (n− 1)

∥∥∇Φk
∥∥2 . (A.18)

A.3. PROOFS OF SECTION 2.4 93

Then, expanding (A.12) using (A.13), (A.14), (A.17) and (A.18), we obtain

1

n
Eik
[
hik(ϕ

k+1
ik

)
]

≤
[
1− τx
τxn

−
(
1− µτz

τx

)
L− µ
αn

]
Eik
[〈
∇hik(ϕk+1

ik
), ϕkik − ϕ

k+1
ik

〉]
+

(
1− µτz

τx

)
L− µ
αn

(
Φk − Eik

[
hik(ϕ

k+1
ik

)
])

+

(
1− µτz

τx

)
α

2n

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+

[
1

α
− µτz
ατx
− τz
τx

+
n− 1

L− µ

] 〈
Eik
[
∇Φk+1

]
,∇Φk

〉
−
[

(n− 1)2

2(L− µ)n
+

(
1− µτz

τx

)
1

2αn
+

(
1

α
− µτz
ατx
− τz
τx

)
n− 1

n

] ∥∥∇Φk
∥∥2

− n

2(L− µ)
∥∥Eik [∇Φk+1

]∥∥2 .
Choosing τz such that 1−τx

τx
=
(
1− µτz

τx

)
L−µ
α

, multiplying both sides by τx and

using (A.15), we can simplify the above inequality as

Eik
[
Φk+1

]
≤
(
1− τx

n

)
Φk +

α2(1− τx)
2(L− µ)n

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+
α + µ− τx(α + L+ µ− µn)

(L− µ)µ
〈
Eik
[
∇Φk+1

]
,∇Φk

〉
−

(n− 2)τx +
1
n
+
(
α
µ
+ 1−

(
α
µ
+ κ
)
τx

) (
2− 2

n

)
2(L− µ)

∥∥∇Φk
∥∥2

− nτx
2(L− µ)

∥∥Eik [∇Φk+1
]∥∥2 .

Fixing τx =
α+µ
α+L

, we obtain

Eik
[
Φk+1

]
≤
(
1− τx

n

)
Φk +

α2(1− τx)
2(L− µ)n

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+

(n− 1)τx
L− µ

〈
Eik
[
∇Φk+1

]
,∇Φk

〉
− nτx

2(L− µ)
∥∥Eik [∇Φk+1

]∥∥2
−

(n− 2)τx +
1
n

2(L− µ)
∥∥∇Φk

∥∥2 .

94 APPENDIX A. APPENDIX FOR CHAPTER 2

Using Young’s inequality with β > 0,

Eik
[
Φk+1

]
≤
(
1− τx

n

)
Φk +

α2(1− τx)
2(L− µ)n

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
+
β(n− 1)τx − nτx

2(L− µ)
∥∥Eik [∇Φk+1

]∥∥2 + (n−1)τx
β
− (n− 2)τx − 1

n

2(L− µ)
∥∥∇Φk

∥∥2 .
Let β ∈

[
n−1

n−2+ 1
nτx

, n
n−1

]
. The last two terms become non-positive, and thus we

have

Eik
[
Φk+1

]
≤
(
1− τx

n

)
Φk+

α2(1− τx)
2(L− µ)n

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)2
Eik
[
∥zk+1 − x⋆∥2

])
.

Letting
(
1− τx

n

) (
1 + µ

α

)2
= 1 completes the proof.

A.4 Proof of Section 2.5 (Theorem 3)

Using Lemma 2 with the relations

xk+1 = proxαik

(
xk +

1

α

(
∇fik(ϕkik)−

1

n

n∑
i=1

∇fi(ϕki) + µ

(
1

n

n∑
i=1

ϕki − ϕkik

)))
,

x⋆ = proxαik

(
x⋆ +

1

α
∇fik(x⋆)

)
and ϕk+1

ik
= xk+1,

and based on that ∇hi(x) = ∇fi(x)−∇fi(x⋆)− µ(x− x⋆), we have(
1 +

2(α + µ)

L− µ

)∥∥∇hik(ϕk+1
ik

)
∥∥2 + (α + µ)2 ∥xk+1 − x⋆∥2

≤ α2

∥∥∥∥∥xk − x⋆ + 1

α

(
∇hik(ϕkik)−

1

n

n∑
i=1

∇hi(ϕki)

)∥∥∥∥∥
2

.

Expanding the right side, taking the expectation and using E
[
∥X − EX∥2

]
≤

E
[
∥X∥2

]
, we obtain(
1 +

2(α + µ)

L− µ

)
Eik
[∥∥∇hik(ϕk+1

ik
)
∥∥2]+ (α + µ)2Eik

[
∥xk+1 − x⋆∥2

]
≤ α2 ∥xk − x⋆∥2 +

1

n

n∑
i=1

∥∥∇hi(ϕki)∥∥2.

A.5. EXPERIMENTAL SETUP 95

Note that by construction,

Eik

[
n∑
i=1

∥∥∇hi(ϕk+1
i)

∥∥2] =
n− 1

n

n∑
i=1

∥∥∇hi(ϕki)∥∥2 + Eik
[∥∥∇hik(ϕk+1

ik
)
∥∥2] .

We can thus arrange the terms as(
n

α2
+

2(α + µ)n

α2(L− µ)

)
Eik

[
1

n

n∑
i=1

∥∥∇hi(ϕk+1
i)

∥∥2]+ (1 + µ

α

)2
Eik
[
∥xk+1 − x⋆∥2

]
≤
(
n

α2
+

2(α + µ)(n− 1)

α2(L− µ)

)
· 1
n

n∑
i=1

∥∥∇hi(ϕki)∥∥2 + ∥xk − x⋆∥2 .
In view of the Lyapunov function, we choose α to be the positive root of the

following equation: (
1 +

µ

α

)2(
1− 2(α + µ)

n(L− µ) + 2n(α + µ)

)
= 1.

Let q = α
µ
> 0, the above is a cubic equation:

s(q) ≜ 2q3 − (4n− 6)q2 − (2nκ+ 4n− 6)q − (nκ+ n− 2) = 0,

which has a unique positive root (denoted as q⋆).
Note that s(−∞) < 0, s(−1

2
) = 1

4
and s(0) ≤ 0. These facts suggest that if for

some u > 0, s(u) > 0, we have q⋆ < u. It can be verified that s(2n+
√
nκ) > 0, and

thus q⋆ = O(n+
√
nκ).

A.5 Experimental Setup

We ran experiments on an HP Z440 machine with a single Intel Xeon E5-1630v4 with
3.70GHz cores, 16GB RAM, Ubuntu 18.04 LTS with GCC 4.8.0, MATLAB R2017b.
We were optimizing the following binary problems with ai ∈ Rd, bi ∈ {−1,+1},
i ∈ [n]:

ℓ2-Logistic Regression:
1

n

n∑
i=1

log
(
1 + exp (−bi ⟨ai, x⟩)

)
+
µ

2
∥x∥2 ,

Ridge Regression:
1

2n

n∑
i=1

(⟨ai, x⟩ − bi)2 +
µ

2
∥x∥2 .

96 APPENDIX A. APPENDIX FOR CHAPTER 2

We used datasets from the LIBSVM website [20], including a9a (32,561 samples,
123 features), covtype.binary (581,012 samples, 54 features), w8a (49,749 samples,
300 features), ijcnn1 (49,990 samples, 22 features). We added one dimension as bias
to all the datasets.

We choose SAGA and Katyusha as the baselines in the finite-sum experiments
due to the following reasons: SAGA has low iteration cost and good empirical perfor-
mance with support for non-smooth regularizers, and is thus implemented in machine
learning libraries such as scikit-learn [119]; Katyusha achieves the state-of-the-art
performance for ill-conditioned problems1.

A.6 Analyzing NAG using Lyapunov Function

In this section, we review the convergence of NAG in the strongly convex setting
for a better comparison with the convergence guarantee and proof of G-TM. This
Lyapunov analysis has been similarly presented in many existing works, e.g., [149,
57, 10, 116]. We adopt a simplified version of NAG in Algorithm 16 (1-memory
accelerated methods, [148]) and only consider constant parameter choices. It is
known that NAG can be analyzed based on the following Lyapunov function (λ > 0):

Tk = f(xk)− f(x⋆) +
λ

2
∥zk − x⋆∥2 , (A.19)

which is somehow suggested in the construction of the estimate sequence in Nesterov
[109]. This choice requires neither f(xk) − f(x⋆) nor ∥zk − x⋆∥2 to be monotone
decreasing over iterations, which is called the non-relaxational property in Nesterov
[104]. By re-organizing the proof in Nesterov [109] under the notion of Lyapunov
function, we obtain the per-iteration contraction of NAG in Theorem A.6.1.

Theorem A.6.1. In Algorithm 16, suppose we choose α, τx, τy under the constraints
(A.20), the iterations satisfy the contraction (A.21) for the Lyapunov function (A.19).

α ≥ L(1−τx)τy
1−τy , τx ≥ τy,

µ ≥ L(τx−τy)
1−τy ,(

1 + µ
α

)
(1− τx) ≤ 1.

(A.20)
With λ = (α + µ)τx,

Tk+1 ≤
(
1 +

µ

α

)−1

Tk, for k ≥ 0.
(A.21)

1Zhou et al. [159] shows that SSNM can be faster than Katyusha in some cases. In theory, SSNM
and Katyusha achieve the same rate if we set m = n for Katyusha (both require 2 oracle calls per-
iteration). In practice, if m = n, they have similar performance (SSNM is often faster). Considering
the stability and memory requirement, Katyusha still achieves the state-of-the-art performance both
theoretically and empirically.

A.6. ANALYZING NAG USING LYAPUNOV FUNCTION 97

Algorithm 16 Nesterov’s Accelerated Gradient (NAG)

Input: Parameters α > 0, τy, τx ∈]0, 1[and initial guesses x0, z0 ∈ Rd, iteration
number K.

1: for k = 0, . . . , K − 1 do
2: yk = τyzk + (1− τy)xk.
3: zk+1 = argminx

{
⟨∇f(yk), x⟩+ (α/2) ∥x− zk∥2 + (µ/2) ∥x− yk∥2

}
.

4: xk+1 = τxzk+1 + (1− τx)xk.
5: end for

Output: xK .

When the inequalities in constraints (A.20) (except τx ≥ τy) hold as equality, we
derive the standard choice of NAG: α =

√
Lµ−µ, τy = (

√
κ+1)−1, τx = (

√
κ)−1. By

substituting this choice and eliminating sequence {zk}, we recover the widely-used
scheme (Constant Step scheme III in Nesterov [109]):

xk+1 = yk −
1

L
∇f(yk),

yk+1 = xk+1 +

√
κ− 1√
κ+ 1

(xk+1 − xk).

Telescoping (A.21), we obtain the original guarantee of NAG (cf. Theorem 2.2.3 in
Nesterov [109]),

f(xK)− f(x⋆) +
µ

2
∥zK − x⋆∥2 ≤

(
1− 1√

κ

)K (
f(x0)− f(x⋆) +

µ

2
∥z0 − x⋆∥2

)
.

If we regard the constraints (A.20) as an optimization problem with a target of
minimizing the rate factor (1+ µ

α
)−1, the rate factor 1−1/

√
κ is optimal. Combining

α ≥ L(1−τx)τy
1−τy and µ ≥ L(τx−τy)

1−τy , we have α ≥ Lτx − µ. To minimize α, we fix

α = Lτx − µ, and it can be easily verified that in this case, the smallest rate factor
is achieved when

(
1 + µ

α

)
(1 − τx) = 1. Note that these arguments do not consider

variable-parameter choices and are limited to the current analysis framework only.

Denote the initial constant as CNAG
0 ≜ f(x0)− f(x⋆) + µ

2
∥z0 − x⋆∥2. This guar-

antee shows that in terms of reducing ∥x− x⋆∥2 to ϵ, sequences {xk} and {zk} have
the same iteration complexity

√
κ log

2CNAG
0

µϵ
. Since {yk} is a convex combination of

them, it also converges with the same complexity.

98 APPENDIX A. APPENDIX FOR CHAPTER 2

A.6.1 Proof of Theorem A.6.1

For the convex combination yk = τyzk + (1− τy)xk, we can use the trick in Lemma
3 to obtain

f(yk)− f(x⋆) ≤
1− τy
τy
⟨∇f(yk), xk − yk⟩+ ⟨∇f(yk), zk − x⋆⟩ −

µ

2
∥yk − x⋆∥2

=
1− τy
τy
⟨∇f(yk), xk − yk⟩+ ⟨∇f(yk), zk − zk+1⟩︸ ︷︷ ︸

R1

(A.22)

+ ⟨∇f(yk), zk+1 − x⋆⟩︸ ︷︷ ︸
R2

−µ
2
∥yk − x⋆∥2 .

For R1, based on the L-smoothness, we have

f(xk+1)− f(yk) + ⟨∇f(yk), yk − xk+1⟩ ≤
L

2
∥xk+1 − yk∥2 .

Note that yk−xk+1 = τx(zk−zk+1)+(τy− τx)(zk−xk), we can arrange the above
inequality as

f(xk+1)− f(yk) + ⟨∇f(yk), τx(zk − zk+1) + (τy − τx)(zk − xk)⟩ ≤
L

2
∥xk+1 − yk∥2 ,

R1 ≤
L

2τx
∥xk+1 − yk∥2 +

1

τx

(
f(yk)− f(xk+1)

)
− τy − τx

τx
⟨∇f(yk), zk − xk⟩ . (A.23)

For R2, based on the optimality condition of the 3rd step in Algorithm 16, which
is for any u ∈ Rd,

⟨∇f(yk) + α(zk+1 − zk) + µ(zk+1 − yk), u− zk+1⟩ = 0,

we have (by choosing u = x⋆),

R2 = α ⟨zk+1 − zk, x⋆ − zk+1⟩+ µ ⟨zk+1 − yk, x⋆ − zk+1⟩

=
α

2
(∥zk − x⋆∥2 − ∥zk+1 − x⋆∥2 − ∥zk+1 − zk∥2) (A.24)

+
µ

2
(∥yk − x⋆∥2 − ∥zk+1 − x⋆∥2 − ∥zk+1 − yk∥2).

By upper bounding (A.22) using (A.23), (A.24), we can conclude that

f(yk)− f(x⋆) ≤
1− τx
τx
⟨∇f(yk), xk − yk⟩+

1

τx

(
f(yk)− f(xk+1)

)
+
α

2

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)
∥zk+1 − x⋆∥2

)
+

L

2τx
∥xk+1 − yk∥2 −

α

2
∥zk+1 − zk∥2 −

µ

2
∥zk+1 − yk∥2 ,

A.6. ANALYZING NAG USING LYAPUNOV FUNCTION 99

Re-arrange the terms,

f(xk+1)− f(x⋆)

≤ (1− τx)
(
f(xk)− f(x⋆)

)
+
ατx
2

(
∥zk − x⋆∥2 −

(
1 +

µ

α

)
∥zk+1 − x⋆∥2

)
+
L

2
∥xk+1 − yk∥2 −

ατx
2
∥zk+1 − zk∥2 −

µτx
2
∥zk+1 − yk∥2 .

(A.25)

Note that the following relation holds:

xk+1 − yk = τx

(
(1− τx)τy
(1− τy)τx

(zk+1 − zk) +
τx − τy

(1− τy)τx
(zk+1 − yk)

)
,

and thus if τx ≥ τy, based on the convexity of ∥·∥2, we have

L

2
∥xk+1 − yk∥2 ≤

L(1− τx)τxτy
2(1− τy)

∥zk+1 − zk∥2 +
L(τx − τy)τx
2(1− τy)

∥zk+1 − yk∥2 .

Finally, suppose that the following relations hold
τx ≥ τy,

α ≥ L(1−τx)τy
1−τy ,

µ ≥ L(τx−τy)
1−τy ,(

1 + µ
α

)
(1− τx) ≤ 1,

we can arrange (A.25) as

f(xk+1)− f(x⋆) +
ατx
2

(
1 +

µ

α

)
∥zk+1 − x⋆∥2

≤
(
1 +

µ

α

)−1 (
f(xk)− f(x⋆) +

ατx
2

(
1 +

µ

α

)
∥zk − x⋆∥2

)
,

which completes the proof.

Appendix B

Appendix for Chapter 3

B.1 Numerical Results of Acc-SVRG-G

0 50 100 150 200 250 300
10 -8

10 -6

10 -4

10 -2

(a) a9a dataset. Measuring the
gradient norm.

0 50 100 150 200 250 300
10 -8

10 -6

10 -4

10 -2

(b) w8a dataset. Measuring
the gradient norm.

0 50 100 150 200 250 300
10 -8

10 -6

10 -4

10 -2

(c) a9a dataset. Measuring the
function value.

0 50 100 150 200 250 300

10 -6

10 -4

10 -2

(d) w8a dataset. Measuring
the function value.

Figure B.1: Run 20 seeds. Shaded bands indicate ±1 standard deviation.

100

B.1. NUMERICAL RESULTS OF ACC-SVRG-G 101

We did some experiments to justify the theoretical results (Theorem 7) of Acc-
SVRG-G. We compared it with non-accelerated methods including L2S [88], SVRG
[64, 152] and SAGA [29] under their original optimality measures. Note that other
stochastic approaches in Table 3.1 require fixing the accuracy ϵ in advance, and thus
it is not convenient to compare them in the form of Figure B.1. For measuring the
gradient norm, we simply tracked the smallest norm of all the full gradient computed
to reduce complexity. Since the figures are in logarithmic scale, the deviation bands
are asymmetric, and will emphasize the passes that have large deviations.

Setups. We ran the experiments on a Macbook Pro with a quad-core Intel
Core i7-4870HQ with 2.50GHz cores, 16GB RAM, macOS Big Sur with Clang 12.0.5
and MATLAB R2020b. We were optimizing the binary logistic regression problem
f(x) = 1

n

∑n
i=1 log

(
1 + exp (−bi ⟨ai, x⟩)

)
with dataset ai ∈ Rd, bi ∈ {−1,+1}, i ∈ [n].

We used datasets from the LIBSVM website [20], including a9a [38] (32,561 samples,
123 features) and w8a [122] (49,749 samples, 300 features). We added one dimension
as bias to all the datasets. We normalized the datasets and thus for this problem,
L = 0.25. For Acc-SVRG-G, we chose the parameters according to Theorem 7. For
L2S, we set m = n and for its n-independent step size, we chose η = c

L
and tuned c

using the same grid specified in [88]; for the n-dependent step size, we set η = 1
L
√
n

according to Corollary 3 in [88]. For SAGA [29], we chose η = 1
3L

following its theory.
For SVRG [152], we set η = 1

4L
.

102 APPENDIX B. APPENDIX FOR CHAPTER 3

B.2 Proofs of Section 3.2

To simplify the proof, we denote Dk ≜ f(xk) − f(x⋆). And we use the following
reformulation of interpolation condition (1.2) (at (x, y)) to facilitate our proof.

1

2L

(
∥∇f(x)∥2 + ∥∇f(y)∥2

)
+

〈
∇f(y), x− y − 1

L
∇f(x)

〉
≤ f(x)− f(y), ∀x, y ∈ Rd.

(B.1)

B.2.1 Proof of Proposition 3.1

We define θ2N+1 = θ2N − θN = 0. At iteration k, we are going to combine the reformu-
lated interpolation conditions (B.1) at (xk, xk+1) and (xN , xk) with multipliers 1

θ2k+1

and 1
θkθ

2
k+1

, respectively.

1

2Lθ2k+1

(
∥∇f(xk)∥2 + ∥∇f(xk+1)∥2

)
≤ 1

θ2k+1

(Dk −Dk+1)−
1

θ2k+1

〈
∇f(xk+1), xk − xk+1 −

1

L
∇f(xk)

〉
,

(B.2)

1

2Lθkθ2k+1

(
∥∇f(xN)∥2 + ∥∇f(xk)∥2

)
≤ 1

θkθ2k+1

(DN −Dk)−
1

θkθ2k+1

〈
∇f(xk), xN − xk −

1

L
∇f(xN)

〉
.

(B.3)

Using the construction: xk − xk+1 =
1
L
∇f(xk) + (2θ3k+1− θ2k+1)vk+1, we can write

(B.2) as

1

2Lθ2k+1

(
∥∇f(xk)∥2 + ∥∇f(xk+1)∥2

)
+ (2θk+1 − 1) ⟨∇f(xk+1), vk+1⟩

≤ 1

θ2k+1

(Dk −Dk+1).
(B.4)

B.2. PROOFS OF SECTION 3.2 103

Note that using θ2k − θk = θ2k+1, we have 2θ3k+1 − θ2k+1 = θ4k+1 − θ4k+2. Then,

xk − xN =
N−1∑
i=k

(xi − xi+1) =
1

L

N−1∑
i=k

∇f(xi) +
N−1∑
i=k

(θ4i+1 − θ4i+2)vi+1

=
1

L

N−1∑
i=k

∇f(xi) + θ4k+1vk+1 +
N−2∑
i=k

θ4i+2(vi+2 − vi+1)

(a)
=

1

L

N−1∑
i=k

∇f(xi) + θ4k+1vk+1 +
N−2∑
i=k

θ2i+2

Lθi+1

∇f(xi+1)

(b)
= θ4k+1vk +

N−1∑
i=k

θi
L
∇f(xi),

where (a) and (b) use the construction: vk+1 = vk +
1

Lθkθ
2
k+1
∇f(xk).

Thus, (B.3) can be written as

1

θkθ2k+1

(DN −Dk) ≥
1

2Lθkθ2k+1

∥∇f(xN)∥2 −
θ2k + θ2k+1

2Lθ2kθ
2
k+1

∥∇f(xk)∥2

−
θ2k+1

θk
⟨∇f(xk), vk⟩ −

N∑
i=k+1

θi
Lθkθ2k+1

⟨∇f(xk),∇f(xi)⟩.

Summing this inequality and (B.4), and using the relation θ2k − θk = θ2k+1, we obtain

(
1

θ2k+1

− 1

θ2k

)(
DN −

1

2L
∥∇f(xN)∥2

)
+

(
1

θ2k
Dk −

1

θ2k+1

Dk+1

)
≥
(

1

2Lθ2k+1

∥∇f(xk+1)∥2 −
1

2Lθ2k
∥∇f(xk)∥2

)
+

(
θ2k+2

θk+1

⟨∇f(xk+1), vk+1⟩ −
θ2k+1

θk
⟨∇f(xk), vk⟩

)
+ θk+1 ⟨∇f(xk+1), vk+1⟩ −

N∑
i=k+1

θi
Lθkθ2k+1

⟨∇f(xk),∇f(xi)⟩︸ ︷︷ ︸
R1

.

(B.5)

104 APPENDIX B. APPENDIX FOR CHAPTER 3

B.2.2 Proof of Theorem 4

Clearly, except for R1, all terms in (B.5) telescope. Since vk+1 =
∑k

i=0
1

Lθiθ2i+1
∇f(xi),

by defining a matrix P ∈ R(N+1)×(N+1) with Pki =
θk

Lθiθ2i+1
⟨∇f(xk),∇f(xi)⟩, we can

write R1 as
∑k

i=0 P(k+1)i −
∑N

i=k+1 Pik. Summing these terms from k = 0 to N − 1,
we obtain

N−1∑
k=0

k∑
i=0

P(k+1)i −
N−1∑
k=0

N∑
i=k+1

Pik =
N∑
k=1

k−1∑
i=0

Pki −
N−1∑
i=0

N∑
k=i+1

Pki = 0.

Both of the summations are equal to the sum of the lower triangular entries of P .
Then, telescoping (B.5) from k = 0 to N − 1 (note that v0 = 0), we obtain(

1− 1

θ20

)(
DN −

1

2L
∥∇f(xN)∥2

)
≥ DN−

1

θ20
D0+

1

2L
∥∇f(xN)∥2−

1

2Lθ20
∥∇f(x0)∥2 .

Using D0 ≥ 1
2L
∥∇f(x0)∥2 and DN ≥ 1

2L
∥∇f(xN)∥2, we obtain

∥∇f(xN)∥2 ≤
2LD0

θ20
.

Since θk =
1+
√

1+4θ2k+1

2
≥ 1

2
+ θk+1 ⇒ θk ≥ N−k

2
+ 1⇒ θ0 ≥ N+2

2
, we have

∥∇f(xN)∥2 ≤
8L
(
f(x0)− f(x⋆)

)
(N + 2)2

.

B.2.3 Proof of Theorem 5

Define for k = 0, . . . , N ,

τk ≜
(N − k + 2)(N − k + 3)

6
,

δk+1 ≜
12

(N − k + 1)(N − k + 2)(N − k + 3)
=

1

τk+1

− 1

τk
.

At iteration k, we are going to combine the reformulated interpolation conditions
(B.1) at (xk, xk+1) and (xN , xk) with multipliers 1

τk+1
and δk+1, respectively.

1

2Lτk+1

(
∥∇f(xk)∥2+∥∇f(xk+1)∥2

)
+

1

τk+1

〈
∇f(xk+1), xk−xk+1−

1

L
∇f(xk)

〉
≤ 1

τk+1

(Dk−Dk+1),

(B.6)

B.2. PROOFS OF SECTION 3.2 105

δk+1

2L

(
∥∇f(xN)∥2 + ∥∇f(xk)∥2

)
+ δk+1

〈
∇f(xk), xN − xk −

1

L
∇f(xN)

〉
≤ δk+1(DN −Dk).

(B.7)

Note that from the construction of Algorithm 5,

xk − xk+1 −
1

L
∇f(xk) =

(N − k)(N − k + 1)(N − k + 2)

6
vk+1,

xk − xN =
N−1∑
i=k

1

L
∇f(xi) +

N−1∑
i=k

(N − i)(N − i+ 1)(N − i+ 2)

6
vi+1.

Thus, (B.6) can be written as

1

2Lτk+1

(
∥∇f(xk)∥2 + ∥∇f(xk+1)∥2

)
+ (N − k) ⟨∇f(xk+1), vk+1⟩

≤ 1

τk+1

(Dk −Dk+1).
(B.8)

Defining Q(j) ≜ (j+3)(j+2)(j+1)j, we have Q(j)−Q(j−1) = 4j(j+1)(j+2).
Then,

xk − xN =
N−1∑
i=k

1

L
∇f(xi) +

1

24

N−1∑
i=k

(Q(N − i)−Q(N − i− 1))vi+1

=
N−1∑
i=k

1

L
∇f(xi) +

1

24

(
Q(N − k)vk+1 +

N−1∑
i=k+1

Q(N − i)(vi+1 − vi)

)
(a)
=
Q(N − k)

24
vk+1 +

1

L
∇f(xk) +

N−1∑
i=k+1

1

L

(
Q(N − i)δi+1

24
+ 1

)
∇f(xi)

(b)
=
Q(N − k)

24
vk +

N−1∑
i=k

N − i+ 2

2L
∇f(xi),

where (a) and (b) use the construction vk+1 = vk +
δk+1

L
∇f(xk).

Thus, (B.7) can be written as

δk+1(DN −Dk) ≥
δk+1

2L

(
∥∇f(xN)∥2 + ∥∇f(xk)∥2

)
− N − k

2
⟨∇f(xk), vk⟩

− (N − k + 2)δk+1

2L
∥∇f(xk)∥2

−
N∑

i=k+1

(N − i+ 2)δk+1

2L
⟨∇f(xk),∇f(xi)⟩.

106 APPENDIX B. APPENDIX FOR CHAPTER 3

Summing the above inequality and (B.8), we obtain(
1

τk+1

− 1

τk

)(
DN −

1

2L
∥∇f(xN)∥2

)
+

(
1

τk
Dk −

1

τk+1

Dk+1

)
≥
(

1

2Lτk+1

∥∇f(xk+1)∥2 −
1

2Lτk
∥∇f(xk)∥2

)
+
δk+1

2L
∥∇f(xk)∥2

+

(
N − k − 1

2
⟨∇f(xk+1), vk+1⟩ −

N − k
2
⟨∇f(xk), vk⟩

)
+
N − k + 1

2
⟨∇f(xk+1), vk+1⟩ −

N∑
i=k+1

(N − i+ 2)δk+1

2L
⟨∇f(xk),∇f(xi)⟩.

(B.9)

Since vk+1 =
∑k

i=0
δi+1

L
∇f(xi), the last two terms above have a similar structure asR1

at (B.5). Define a matrix P ∈ R(N+1)×(N+1) with Pki =
(N−k+2)δi+1

2L
⟨∇f(xk),∇f(xi)⟩.

The last two terms above can be written as
∑k

i=0 P(k+1)i −
∑N

i=k+1 Pik. If we sum
these terms from k = 0, . . . , N − 1, they sum up to 0 (see Section B.2.2). Then, by
telescoping (B.9) from k = 0, . . . , N − 1, we obtain

1

2L
∥∇f(xN)∥2 −

1

2Lτ0
∥∇f(x0)∥2 +

1− 1
τ0

2L
∥∇f(xN)∥2 +

N−1∑
k=0

δk+1

2L
∥∇f(xk)∥2

≤
(
1− 1

τ0

)
DN +

1

τ0
D0 −DN .

Finally, using D0 ≥ 1
2L
∥∇f(x0)∥2 and DN ≥ 1

2L
∥∇f(xN)∥2, we obtain

∥∇f(xN)∥2 +
N−1∑
k=0

δk+1

2
∥∇f(xk)∥2 ≤

2L

τ0
D0 =

12L
(
f(x0)− f(x⋆)

)
(N + 2)(N + 3)

. (B.10)

B.2.4 Proof of Corollary 5.1

We assume N is divisible by 2 for simplicity. After running N/2 iterations of NAG,
we obtain an output xN/2 satisfying (cf. Theorem 2.2.2 in [109])

f(xN/2)− f(x⋆) = O

(
LR2

0

N2

)
.

Then, let xN/2 be the input of Algorithm 5. Using (B.10), after running another N/2
iterations of Algorithm 5, we obtain

∥∇f(xN)∥2 = O

(
L2R2

0

N4

)
.

B.3. PROOFS OF SECTION 3.3 107

B.3 Proofs of Section 3.3

B.3.1 Proof of Proposition 5.1

Using the interpolation condition (1.2) at (x⋆, yk), we obtain

f(yk)− f(x⋆) ≤ ⟨∇f(yk), yk − x⋆⟩ −
1

2L
∥∇f(yk)∥2

(⋆)

≤ 1− τk
τk
⟨∇f(yk), x̃k − yk⟩ −

1− τk
Lτk

⟨∇f(yk),∇f(x̃k)⟩ (B.11)

+ ⟨∇f(yk), zk − x⋆⟩ −
1

2L
∥∇f(yk)∥2 ,

where (⋆) follows from the construction yk = τkzk + (1− τk)
(
x̃k − 1

L
∇f(x̃k)

)
.

From the optimality condition of Step 3, we can conclude that

Gk + αk(zk+1 − zk) = 0

(a)⇒ ⟨Gk, zk − x⋆⟩ =
1

2αk
∥Gk∥2 +

αk
2

(
∥zk − x⋆∥2 − ∥zk+1 − x⋆∥2

)
(b)⇒ ⟨∇f(yk), zk−x⋆⟩=

1

2αk
Eik
[
∥Gk∥2

]
+
αk
2

(
∥zk−x⋆∥2−Eik

[
∥zk+1−x⋆∥2

])
, (B.12)

where (a) uses ⟨u, v⟩ = 1
2
(∥u∥2 + ∥v∥2 − ∥u− v∥2) and (b) follows from taking the

expectation wrt sample ik.
Using the interpolation condition (1.2) at (x̃k, yk), we can bound Eik

[
∥Gk∥2

]
as

Eik
[
∥Gk∥2

]
= Eik

[
∥∇fik(yk)−∇fik(x̃k)∥

2]+ 2 ⟨∇f(yk),∇f(x̃k)⟩ − ∥∇f(x̃k)∥2

≤ 2L
(
f(x̃k)− f(yk)− ⟨∇f(yk), x̃k − yk⟩

)
+ 2 ⟨∇f(yk),∇f(x̃k)⟩ (B.13)

− ∥∇f(x̃k)∥2 .

Combine (B.11), (B.12) and (B.13).

f(yk)− f(x⋆) ≤
L

αk

(
f(x̃k)− f(yk)

)
+

(
1− τk
τk

− L

αk

)
⟨∇f(yk), x̃k − yk⟩

+

(
1

αk
− 1− τk

Lτk

)
⟨∇f(yk),∇f(x̃k)⟩

+
αk
2

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
− 1

2L
∥∇f(yk)∥2 −

1

2αk
∥∇f(x̃k)∥2 .

108 APPENDIX B. APPENDIX FOR CHAPTER 3

Substitute the choice αk =
Lτk
1−τk

.

1− τk
τ 2k

(
f(yk)− f(x⋆)

)
≤ (1− τk)2

τ 2k

(
f(x̃k)− f(x⋆)

)
+
L

2

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
− 1− τk

2Lτk
∥∇f(yk)∥2 −

(1− τk)2

2Lτ 2k
∥∇f(x̃k)∥2 . (B.14)

Note that by construction, E
[
f(x̃k+1)

]
= pkE

[
f(yk)

]
+(1−pk)E

[
f(x̃k)

]
, and thus

1− τk
τ 2kpk

E
[
f(x̃k+1)− f(x⋆)

]
≤ (1− τkpk)(1− τk)

τ 2kpk
E
[
f(x̃k)− f(x⋆)

]
+
L

2

(
E
[
∥zk − x⋆∥2

]
− E

[
∥zk+1 − x⋆∥2

])
− 1− τk

2Lτk
E
[
∥∇f(yk)∥2

]
− (1− τk)2

2Lτ 2k
E
[
∥∇f(x̃k)∥2

]
.

B.3.2 Proof of Theorem 6

It can be easily verified that under this choice (pk ≡ 1
n
, τk = 3

k/n+6
), for any k ≥

0, n ≥ 1,

(1− τk+1pk+1)(1− τk+1)

τ 2k+1pk+1

≤ 1− τk
τ 2kpk

.

Then, using Proposition 5.1, after summing (3.4) from k = 0, . . . , K − 1, we
obtain

n(1− τK−1)

τ 2K−1

E
[
f(x̃K)− f(x⋆)

]
+
L

2
E
[
∥zK − x⋆∥2

]
+

K−1∑
k=0

(1− τk)2

2Lτ 2k
E
[
∥∇f(x̃k)∥2

]
≤ (2n− 1)

(
f(x0)− f(x⋆)

)
+
L

2
∥x0 − x⋆∥2 .

Note that τk ≤ 1
2
,∀k. We have the following two consequences of the above

B.3. PROOFS OF SECTION 3.3 109

inequality.

E
[
f(x̃K)

]
− f(x⋆) ≤ τ 2K−1

(
4
(
f(x0)− f(x⋆)

)
+
L

n
∥x0 − x⋆∥2

)
,

E
[
∥∇f(xout)∥2

]
=

1∑K−1
k=0 τ

−2
k

K−1∑
k=0

1

τ 2k
E
[
∥∇f(x̃k)∥2

]
≤

16nL
(
f(x0)− f(x⋆)

)
+ 4L2 ∥x0 − x⋆∥2∑K−1

k=0 τ
−2
k

.

Substituting the parameter choice, we obtain

E
[
f(x̃K)

]
− f(x⋆) ≤

36n2
(
f(x0)− f(x⋆)

)
+ 9nL ∥x0 − x⋆∥2

(K + 6n− 1)2
= ϵf ,

E
[
∥∇f(xout)∥2

]
≤

144nL
(
f(x0)− f(x⋆)

)
+ 36L2 ∥x0 − x⋆∥2∑K−1

k=0

(
k
n
+ 6
)2 .

Note that

K−1∑
k=0

(
k

n
+ 6

)2

≥
∫ K

0

(
x− 1

n
+ 6

)2

dx =
(K + 6n− 1)3 − (6n− 1)3

3n2
.

Thus,

E
[
∥∇f(xout)∥

]2 ≤ E
[
∥∇f(xout)∥2

]
≤

432n3L
(
f(x0)− f(x⋆)

)
+ 108n2L2 ∥x0 − x⋆∥2

(K + 6n− 1)3 − (6n− 1)3
= ϵ2g.

Since the expected iteration cost of Algorithm 6 is E
[
#gradk

]
= pk(n+2)+ (1−

pk)2 = 3, to guarantee E
[
∥∇f(xout)∥

]
≤ ϵg and E

[
f(x̃K)

]
− f(x⋆) ≤ ϵf , the total

complexities are O
(
n(L(f(x0)−f(x⋆)))1/3

ϵ
2/3
g

+ (nLR0)2/3

ϵ
2/3
g

)
and O

(
n
√

f(x0)−f(x⋆)
ϵf

+
√
nLR0√
ϵf

)
,

respectively.

B.3.3 Proof of Theorem 7

First, it can be verified that for any k ≥ 0, n ≥ 1, the following inequality holds.

(1− τk+1pk+1)(1− τk+1)

τ 2k+1pk+1

≤ 1− τk
τ 2kpk

.

110 APPENDIX B. APPENDIX FOR CHAPTER 3

The verification can be done by considering the two cases: (i) k + 8 < 6n, where
pk =

6
k+8

, τk =
1
2
, (ii) k + 8 ≥ 6n, in which pk =

1
n
, τk =

3n
k+8

.
Then, using Proposition 5.1, after summing (3.4) from k = 0, . . . , K − 1, we

obtain

1− τK−1

τ 2K−1pK−1

E
[
f(x̃K)− f(x⋆)

]
+
L

2
E
[
∥zK − x⋆∥2

]
+

K−1∑
k=0

(1− τk)2

2Lτ 2k
E
[
∥∇f(x̃k)∥2

]
≤ 5

3

(
f(x0)− f(x⋆)

)
+
L

2
∥x0 − x⋆∥2 ≤

4

3
LR2

0.

Note that τk ≤ 1
2
,∀k. We can conclude the following two consequences.

E
[
f(x̃K)

]
− f(x⋆) ≤ 8

3
τ 2K−1pK−1LR

2
0, (B.15)

E
[
∥∇f(xout)∥2

]
=

1∑K−1
k=0 τ

−2
k

K−1∑
k=0

1

τ 2k
E
[
∥∇f(x̃k)∥2

]
≤ 32L2R2

0

3
∑K−1

k=0 τ
−2
k

. (B.16)

Now we consider two stages.
Stage I (low accuracy stage): K+8 ≤ 6n. In this stage, let the accuracies be

ϵ2g =
8L2R2

0

3K
≥ 8L2R2

0

3(6n−8)
and ϵf =

4LR2
0

K+7
≥ 4LR2

0

6n−1
. By substituting the parameter choice,

(B.15) and (B.16) can be written as

E
[
f(x̃K)

]
− f(x⋆) ≤ 4LR2

0

K + 7
= ϵf ,

E
[
∥∇f(xout)∥

]2 ≤ E
[
∥∇f(xout)∥2

]
≤ 8L2R2

0

3K
= ϵ2g.

Note that the expected iteration cost of Algorithm 6 is E
[
#gradk

]
= pk(n+2)+

(1− pk)2 = npk + 2, and thus the total complexity in this stage is

K−1∑
k=0

E
[
#gradk

]
= n

K−1∑
k=0

6

k + 8
+ 2K ≤ 6n log (K + 7) + 12n = O(n logK).

Thus, the expected complexities in this stage are O(n log LR0

ϵg
) and O(n log

LR2
0

ϵf
),

respectively.
Stage II (high accuracy stage): K + 8 > 6n. In this stage, Algorithm

6 proceeds to find highly accurate solutions (i.e., ϵ2g <
8L2R2

0

3(6n−8)
and ϵf <

4LR2
0

6n−1
).

B.3. PROOFS OF SECTION 3.3 111

Substituting the parameter choice, we can write (B.15) and (B.16) as

E
[
f(x̃K)

]
− f(x⋆) ≤ 24nLR2

0

(K + 7)2
= ϵf , (B.17)

E
[
∥∇f(xout)∥2

]
≤ 32L2R2

0

3
(
24n− 28 +

∑K−1
k=6n−7 τ

−2
k

)
(⋆)

≤ 288n2L2R2
0

(K + 7)3 + 432n3 − 756n2
= ϵ2g,

(B.18)

where (⋆) follows from

K−1∑
k=6n−7

τ−2
k =

1

9n2

K−1∑
k=6n−7

(k + 8)2 ≥ 1

9n2

∫ K

6n−7

(x+ 7)2dx =
(K + 7)3

27n2
− 8n.

Then, we count the expected complexity in this stage.

K−1∑
k=0

E
[
#gradk

]
= n

(
6n−8∑
k=0

6

k + 8
+

K−1∑
k=6n−7

1

n

)
+ 2K ≤ 6n log (6n) + 3K − 6n+ 7.

Finally, combining with (B.17) and (B.18), we can conclude that the total ex-

pected complexities in this stage are O
(
n log n+ (nLR0)2/3

ϵ
2/3
g

)
and O

(
n log n+

√
nLR0√
ϵf

)
,

respectively.

B.3.4 Proof of Theorem 8

We start at inequality (B.14) in the proof of Proposition 5.1, which is the consequence
of one iteration k in Algorithm 6. Due to the constant choice of τk ≡ τ , we have

f(yk)− f(x⋆) ≤ (1−τ)
(
f(x̃k)− f(x⋆)

)
+

Lτ 2

2(1−τ)
(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
− τ

2L
∥∇f(yk)∥2 −

1− τ
2L
∥∇f(x̃k)∥2 .

Since we fix pk ≡ p as a constant and terminate Algorithm 6 at the first time
x̃k+1 = yk (denoted as the iteration N), it is clear that the random variable N follows
the geometric distribution with parameter p, i.e., for k = 0, 1, 2, . . . ,Prob {N = k} =

112 APPENDIX B. APPENDIX FOR CHAPTER 3

(1 − p)kp. Moreover, since we have x̃N = x̃N−1 = · · · = x̃0 = x0, using the above
inequality at iteration N , we obtain

E
[
f(x̃N+1)

]
−f(x⋆)

≤ (1− τ)
(
f(x0)−f(x⋆)

)
+

Lτ 2

2(1− τ)
(
E
[
∥zN − x⋆∥2− ∥zN+1 − x⋆∥2

])
− τ

2L
E
[
∥∇f(x̃N+1)∥2

]
− 1− τ

2L
∥∇f(x0)∥2

(⋆)
= (1− τ)

(
f(x0)−f(x⋆)

)
+

Lτ 2p

2(1− τ)
(
∥x0 − x⋆∥2 − E

[
∥zN+1 − x⋆∥2

])
− τ

2L
E
[
∥∇f(x̃N+1)∥2

]
− 1− τ

2L
∥∇f(x0)∥2 ,

where (⋆) follows from

E
[
∥zN+1 − x⋆∥2

]
=

1

1− p

(
∞∑
k=0

(1− p)kpE
[
∥zk − x⋆∥2

]
− p ∥z0 − x⋆∥2

)
=

1

1− p
(
E
[
∥zN − x⋆∥2

]
− p ∥z0 − x⋆∥2

)
.

Thus, we can conclude that

E
[
f(x̃N+1)

]
− f(x⋆) + τ

2L
E
[
∥∇f(x̃N+1)∥2

]
≤ L

2

(
1− τ + τ 2p

1− τ

)
R2

0.

Note that E
[
N
]
= 1−p

p
and the total expected oracle complexity is n+2(E

[
N
]
+

1) = n+ 2
p
. We choose p = 1

n
, which leads to an O(n) expected complexity. And we

choose τ by minimizing the ratio
(
1− τ + τ2p

1−τ

)
wrt τ . This gives τ = 1− 1√

n+1
≥ 1

4

and

E
[
f(x̃N+1)

]
− f(x⋆) + 1

8L
E
[
∥∇f(x̃N+1)∥2

]
≤ LR2

0√
n+ 1 + 1

.

B.4 Proofs of Section 3.4

We analyze Algorithm 7 following the shifting methodology in Chapter 2, which
explores the tight interpolation condition (2.2) and leads to a simple and clean proof.

Note that after the regularization at Step 2, each f δti is (L + δt)-smooth and δt-
strongly convex. We denote x⋆δt as the unique minimizer of minx f

δt(x). We define a

B.4. PROOFS OF SECTION 3.4 113

shifted version of this problem: minx h
δt(x) = 1

n

∑n
i=1 h

δt
i (x), where

hδti (x) = f δti (x)− f δti (x⋆δt)−
〈
∇f δti (x⋆δt), x− x

⋆
δt

〉
− δt

2

∥∥x− x⋆δt∥∥2 ,∀i.
It can be easily verified that each hδti is L-smooth and convex. Note that hδti (x

⋆
δt
) =

hδt(x⋆δt) = 0 and ∇hδti (x⋆δt) = ∇h
δt(x⋆δt) = 0, which means that hδt and f δt share the

same minimizer x⋆δt .

Then, conceptually, we attempts to solve the shifted problem using a shifted
SVRG gradient estimator: Hδt

k ≜ ∇hδtik(yk) − ∇h
δt
ik
(x̃k) +∇hδt(x̃k) from Chapter 2.

Since the relation Hδt
k = Gδtk − δt(yk − x⋆δt) holds, we can use Lemma 1 in Chapter 2

as an instantiation of the shifted gradient oracle.

B.4.1 Technical Lemma

Lemma 5 (The regularization technique [106]). For an L-smooth and convex func-
tion f and δ > 0, defining f δ(x) = f(x) + δ

2
∥x− x0∥2 ,∀x and denoting x⋆δ as the

unique minimizer of f δ, we have

(i) f δ is (L+ δ)-smooth and δ-strongly convex.
(ii) f δ(x0)− f δ(x⋆δ) ≤ f(x0)− f(x⋆).
(iii) ∥x0 − x⋆δ∥

2 ≤ ∥x0 − x⋆∥2 ,∀x⋆ ∈ X ⋆.
(iv) ∥x0 − x⋆δ∥

2 ≤ 2
δ

(
f(x0)− f(x⋆)

)
.

Proof. (i) can be easily checked by the definition of L-smoothness and strong con-
vexity. (ii) follows from f δ(x0) = f(x0) and f

δ(x⋆δ) ≥ f(x⋆δ) ≥ f(x⋆). For (iii), using
the strong convexity of f δ at (x⋆, x⋆δ),∀x⋆ ∈ X ⋆, we obtain

f δ(x⋆)− f δ(x⋆δ) ≥
δ

2
∥x⋆ − x⋆δ∥

2

⇒ f(x⋆) +
δ

2
∥x⋆ − x0∥2 − f(x⋆δ)−

δ

2
∥x⋆δ − x0∥

2 ≥ δ

2
∥x⋆ − x⋆δ∥

2

⇒ δ

2
∥x0 − x⋆∥2 −

(
f(x⋆δ)− f(x⋆)

)
≥ δ

2
∥x0 − x⋆δ∥

2 +
δ

2
∥x⋆ − x⋆δ∥

2 .

Then (iii) follows from the non-negativeness of f(x⋆δ) − f(x⋆) and ∥x⋆ − x⋆δ∥
2. For

(iv), using the strong convexity of f δ at (x0, x
⋆
δ) and (ii), we have ∥x0 − x⋆δ∥

2 ≤
2
δ

(
f δ(x0)− f δ(x⋆δ)

)
≤ 2

δ

(
f(x0)− f(x⋆)

)
.

114 APPENDIX B. APPENDIX FOR CHAPTER 3

B.4.2 Proof of Proposition 8.1

Denoting κt =
L+δt
δt

, we can write the equation
(
1− p(α+δt)

α+L+δt

) (
1 + δt

α

)2
= 1 as

s

(
α

δt

)
≜

(
α

δt

)3

− (2n− 3)

(
α

δt

)2

− (2nκt + n− 3)

(
α

δt

)
− nκt + 1 = 0.

It can be verified that s(2n + 2
√
nκt) > 0 for any n ≥ 1, κt > 1. Since s(0) < 0

and s(α
δt
) → ∞ as α

δt
→ ∞, the unique positive root satisfies α

δt
≤ 2n + 2

√
nκt =

O(n+
√
nκt).

To bound CIDC and CIFC, it suffices to note that

α2

δ2t
p

L
δt
+ (1− p)(α

δt
+ 1)

(a)
=

(α
δt
+ 1)2

n(α
δt
+ κt)

(b)

≤
(2n+ 2

√
nκt + 1)2

n(2n+ 2
√
nκt + κt)

≤ 6,

where (a) uses the cubic equation and (b) holds because x+1
x+κt

increases monotonically
as x increases. Then,

CIDC ≤ L2 + 6Lδt = O
(
(L+ δt)

2
)
,

CIFC ≤ 14L = O(L).

B.4.3 Proof of Proposition 8.2

Using the interpolation condition (2.2) of hδt at (x⋆δt , yk), we obtain

hδt(yk) ≤
〈
∇hδt(yk), yk − x⋆δt

〉
− 1

2L

∥∥∇hδt(yk)∥∥2
(a)

≤ 1− τx
τx

〈
∇hδt(yk), x̃k − yk

〉
+
τz
τx

〈
∇hδt(yk), δt(x̃k − zk)−∇f δt(x̃k)

〉
+
〈
∇hδt(yk), zk − x⋆δt

〉
− 1

2L

∥∥∇hδt(yk)∥∥2
(b)
=

1− τx
τx

〈
∇hδt(yk), x̃k − yk

〉
− τz
τx

〈
∇hδt(yk),∇hδt(x̃k)

〉
+

(
1− δtτz

τx

)〈
∇hδt(yk), zk − x⋆δt

〉
− 1

2L

∥∥∇hδt(yk)∥∥2 ,
where (a) follows from the construction

yk = τxzk + (1− τx) x̃k + τz
(
δt(x̃k − zk)−∇f δt(x̃k)

)
,

B.4. PROOFS OF SECTION 3.4 115

and (b) uses that δt(x̃k − zk)−∇f δt(x̃k) = δt(x
⋆
δt
− zk)−∇hδt(x̃k).

Using Lemma 1 with Hy = Hδt
k ,Gy = Gδtk , z+ = zk+1, x

⋆ = x⋆δt and taking the

expectation (note that Eik
[
Hδt
k

]
= ∇hδt(yk)), we can conclude that

hδt(yk) ≤
1− τx
τx

〈
∇hδt(yk), x̃k − yk

〉
− τz
τx

〈
∇hδt(yk),∇hδt(x̃k)

〉
− 1

2L

∥∥∇hδt(yk)∥∥2
+

(
1− δtτz

τx

)
α

2

(∥∥zk − x⋆δt∥∥2 − (1 + δt
α

)2

Eik
[∥∥zk+1 − x⋆δt

∥∥2])

+

(
1− δtτz

τx

)
1

2α
Eik
[∥∥Hδt

k

∥∥2] .
To bound the shifted moment, we use the interpolation condition (2.2) of hδtik at

(x̃k, yk), that is

Eik
[∥∥Hδt

k

∥∥2]
= Eik

[∥∥∇hδtik(yk)−∇hδtik(x̃k)∥∥2]+ 2
〈
∇hδt(yk),∇hδt(x̃k)

〉
−
∥∥∇hδt(x̃k)∥∥2

≤ 2L
(
hδt(x̃k)− hδt(yk)−

〈
∇hδt(yk), x̃k − yk

〉)
+ 2

〈
∇hδt(yk),∇hδt(x̃k)

〉
−
∥∥∇hδt(x̃k)∥∥2 .

Re-arrange the terms.

hδt(yk) ≤
(
1− δtτz

τx

)
L

α

(
hδt(x̃k)− hδt(yk)

)
+

(
1− τx
τx

−
(
1− δtτz

τx

)
L

α

)〈
∇hδt(yk), x̃k − yk

〉
+

(
1− δtτz

τx

)
α

2

(∥∥zk − x⋆δt∥∥2 − (1 + δt
α

)2

Eik
[∥∥zk+1 − x⋆δt

∥∥2])

+

(
1

α
− δtτz
ατx
− τz
τx

)〈
∇hδt(yk),∇hδt(x̃k)

〉
− 1

2L

∥∥∇hδt(yk)∥∥2
−
(

1

2α
− δtτz

2ατx

)∥∥∇hδt(x̃k)∥∥2 .
The choice of τz in Proposition 8.1 ensures that 1−τx

τx
=
(
1− δtτz

τx

)
L
α
, which leads

116 APPENDIX B. APPENDIX FOR CHAPTER 3

to

hδt(yk)

≤ (1− τx)hδt(x̃k) +
α2(1− τx)

2L

(∥∥zk − x⋆δt∥∥2 − (1 + δt
α

)2

Eik
[∥∥zk+1 − x⋆δt

∥∥2])

+
α + δt − (α + L+ δt)τx

Lδt

〈
∇hδt(yk),∇hδt(x̃k)

〉
− τx

2L

∥∥∇hδt(yk)∥∥2
− 1− τx

2L

∥∥∇hδt(x̃k)∥∥2 .
Substitute the choice τx =

α+δt
α+L+δt

.

hδt(yk) ≤
L

α + L+ δt
hδt(x̃k)

+
α2

2(α + L+ δt)

(∥∥zk − x⋆δt∥∥2 − (1 + δt
α

)2

Eik
[∥∥zk+1 − x⋆δt

∥∥2]) .
Note that by construction, E

[
hδt(x̃k+1)

]
= pE

[
hδt(yk)

]
+ (1 − p)E

[
hδt(x̃k)

]
, and

thus

E
[
hδt(x̃k+1)

]
≤
(
1− p(α + δt)

α + L+ δt

)
E
[
hδt(x̃k)

]
+

α2p

2(α + L+ δt)

(
E
[∥∥zk − x⋆δt∥∥2]− (1 + δt

α

)2

E
[∥∥zk+1 − x⋆δt

∥∥2]) .
Since α is chosen as the positive root of(

1− p(α + δt)

α + L+ δt

)(
1 +

δt
α

)2

= 1,

defining the potential function

Tk ≜ E
[
hδt(x̃k)

]
+

α2p

2
(
L+ (1− p)(α + δt)

)E[∥∥zk − x⋆δt∥∥2], (B.19)

we have Tk+1 ≤
(
1 + δt

α

)−2
Tk.

B.4. PROOFS OF SECTION 3.4 117

Thus, at iteration k, the following holds,

E
[
hδt(x̃k)

]
≤
(
1 +

δt
α

)−2k
(
hδt(x0) +

α2p

2
(
L+ (1− p)(α + δt)

) ∥∥x0 − x⋆δt∥∥2
)

≤
(
1 +

δt
α

)−2k
(
f δt(x0)− f δt(x⋆δt) +

α2p

2
(
L+ (1− p)(α + δt)

) ∥∥x0 − x⋆δt∥∥2
)

(⋆)

≤
(
1 +

δt
α

)−2k
(
f(x0)− f(x⋆) +

α2p

2
(
L+ (1− p)(α + δt)

) ∥∥x0 − x⋆δt∥∥2
)
,

where (⋆) uses Lemma 5 (ii).
Note that using the interpolation condition (2.2), we have

E
[
hδt(x̃k)

]
≥ 1

2L
E
[∥∥∇hδt(x̃k)∥∥2]

=
1

2L
E
[∥∥∇f δt(x̃k)− δt(x̃k − x⋆δt)∥∥2]

=
1

2L
E
[∥∥∇f(x̃k) + δt(x̃k − x0)− δt(x̃k − x⋆δt)

∥∥2]
=

1

2L
E
[∥∥∇f(x̃k)− δt(x0 − x⋆δt)∥∥2]

≥ 1

2L
E
[∥∥∇f(x̃k)− δt(x0 − x⋆δt)∥∥]2.

Finally, we conclude that

E
[
∥∇f(x̃k)∥

]
≤ δt

∥∥x0 − x⋆δt∥∥
+

(
1 +

δt
α

)−k
√
2L
(
f(x0)− f(x⋆)

)
+

Lα2p

L+ (1− p)(α + δt)

∥∥x0 − x⋆δt∥∥2.
(B.20)

Under IDC: Invoking Lemma 5 (iii) to upper bound (B.20), we obtain that for
any x⋆ ∈ X ⋆,

E
[
∥∇f(x̃k)∥

]
≤

(
δt +

(
1 +

δt
α

)−k
√
L2 +

Lα2p

L+ (1− p)(α + δt)

)
∥x0 − x⋆∥ .

118 APPENDIX B. APPENDIX FOR CHAPTER 3

Under IFC: Invoking Lemma 5 (iv) to upper bound (B.20), we can conclude
that

E
[
∥∇f(x̃k)∥

]
≤

(√
2δt +

(
1 +

δt
α

)−k
√
2L+

2Lα2p(
L+ (1− p)(α + δt)

)
δt

)√
f(x0)− f(x⋆).

B.4.4 Proof of Theorem 9

(i) At outer iteration ℓ, if Algorithm 7 breaks the inner loop (Step 9) at iteration k,
by construction, we have (1 + δℓ

α
)−k
√
CIDC ≤ δℓ . Then, from Proposition 8.2 (i),

E
[
∥∇f(x̃k)∥

]
≤ 2δℓR0

(⋆)

≤ ϵq,

where (⋆) uses δℓ ≤ δ⋆IDC. By Markov’s inequality, it holds that

Prob {∥∇f(x̃k)∥ ≥ ϵ} ≤
E
[
∥∇f(x̃k)∥

]
ϵ

≤ q,

which means that with probability at least 1−q, Algorithm 7 terminates at iteration
k (Step 8) before reaching Step 9.

(ii) Note that the expected gradient complexity of each inner iteration is p(n +
2) + (1− p)2 = np + 2. Then, for an inner loop that breaks at Step 9, its expected
complexity is

E
[
#gradt

]
≤ (np+ 2)

(
α

δt
+ 1

)
log

√
CIDC

δt
.

Substituting the choices in Proposition 8.1, we obtain

E
[
#gradt

]
= O

((
n+

√
nL

δt

)
log

L+ δt
δt

)
.

Thus, the total expected complexity before Algorithm 7 terminates with high prob-
ability at outer iteration ℓ is at most (note that δt = δ0/β

t)

ℓ∑
t=0

E
[
#gradt

]
= O

((
ℓn+

1√
β − 1

√
nLβ

δℓ

)
log

L+ δℓ
δℓ

)
.

B.4. PROOFS OF SECTION 3.4 119

Since outer iteration ℓ > 0 is the first time δℓ ≤ δ⋆IDC, we have δℓ ≤ δ⋆IDC ≤ δℓβ.
Moreover, noting that ℓ = O(log δ0

δℓ
) and δ0 = L, we can conclude that (omitting β)

ℓ∑
t=0

E
[
#gradt

]
= O

((
n log

δ0
δℓ

+

√
nL

δℓ

)
log

L+ δℓ
δℓ

)

= O

((
n log

LR0

ϵq
+

√
nLR0

ϵq

)
log

LR0

ϵq

)
.

B.4.5 Proof of Theorem 10

(i) At outer iteration ℓ, if Algorithm 7 breaks the inner loop (Step 10) at iteration
k, by construction, we have (1 + δℓ

α
)−k
√
CIFC ≤

√
2δℓ . Then, from Proposition 8.2

(ii),

E
[
∥∇f(x̃k)∥

]
≤
√
8δℓ∆0

(⋆)

≤ ϵq,

where (⋆) uses δℓ ≤ δ⋆IFC. By Markov’s inequality, it holds that

Prob {∥∇f(x̃k)∥ ≥ ϵ} ≤
E
[
∥∇f(x̃k)∥

]
ϵ

≤ q,

which means that with probability at least 1−q, Algorithm 7 terminates at iteration
k (Step 8) before reaching Step 10.

(ii) Note that the expected gradient complexity of each inner iteration is p(n +
2) + (1− p)2 = np+ 2. Then, for an inner loop that breaks at Step 10, its expected
complexity is

E
[
#gradt

]
≤ (np+ 2)

(
α

δt
+ 1

)
log

√
CIFC

2δt
.

Substituting the choices in Proposition 8.1, we obtain

E
[
#gradt

]
= O

((
n+

√
nL

δt

)
log

L

δt

)
.

Thus, the total expected complexity before Algorithm 7 terminates with high prob-
ability at outer iteration ℓ is at most (note that δt = δ0/β

t)

ℓ∑
t=0

E
[
#gradt

]
= O

((
ℓn+

1√
β − 1

√
nLβ

δℓ

)
log

L

δℓ

)
.

120 APPENDIX B. APPENDIX FOR CHAPTER 3

Since outer iteration ℓ > 0 is the first time δℓ ≤ δ⋆IFC, we have δℓ ≤ δ⋆IFC ≤ δℓβ.
Moreover, noting that ℓ = O(log δ0

δℓ
) and δ0 = L, we can conclude that (omitting β)

ℓ∑
t=0

E
[
#gradt

]
= O

((
n log

δ0
δℓ

+

√
nL

δℓ

)
log

L

δℓ

)

= O

((
n log

√
L∆0

ϵq
+

√
nL∆0

ϵq

)
log

√
L∆0

ϵq

)
.

B.5 Katyusha + L2S

By applying AdaptReg on Katyusha, Allen-Zhu [4] showed that the scheme outputs
a point xs1 satisfying E

[
f(xs1)

]
− f(x⋆) ≤ ϵ1 in

O

(
n log

LR2
0

ϵ1
+

√
nLR0√
ϵ1

)
,

oracle calls for any ϵ1 > 0 (cf. Corollary 3.5 in [4]).
For L2S, Li et al. [88] proved that when using an n-dependent step size, its output

xa satisfies (cf. Corollary 3 in [88])

E
[
∥∇f(xa)∥

]2 ≤ E
[
∥∇f(xa)∥2

]
= O

(√
nL
(
f(x0)− f(x⋆)

)
T

)
,

after running T iterations.
We can combine these two rates following the ideas in [106]. Set ϵ1 = O

(
Tϵ2√
nL

)
for some ϵ > 0 and let the input x0 of L2S be the output xs1 of Katyusha. By
chaining the above two results, we obtain the guarantee E

[
∥∇f(xa)∥

]
= O(ϵ) in

oracle complexity

O

(
n+ T + n log

n1/4LR0√
Tϵ

+
n3/4LR0√

Tϵ

)
.

Minimizing the complexity by choosing T = O
(√n(LR0)2/3

ϵ2/3

)
, we get the total oracle

complexity

O

(
n log

LR0

ϵ
+

√
n(LR0)

2/3

ϵ2/3

)
.

Appendix C

Appendix for Chapter 4

C.1 Proof of Lemma 3

Upper-bounding the variance term.

Ei
[
∥Gy −∇f(y)∥2

]
(a)
= Ei

[
∥∇fi(y)−∇fi(x̃) +Di∇f(x̃)∥2

]
− ∥∇f(y)∥2

= Ei
[
∥∇fi(y)−∇fi(x̃)∥2

]
+ 2Ei [⟨∇fi(y)−∇fi(x̃), Di∇f(x̃)⟩]

+ Ei
[
∥Di∇f(x̃)∥2

]
− ∥∇f(y)∥2

(b)
= Ei

[
∥∇fi(y)−∇fi(x̃)∥2

]
+ 2Ei [⟨∇fi(y)−∇fi(x̃), D∇f(x̃)⟩]

+ Ei [⟨D∇f(x̃), Di∇f(x̃)⟩]− ∥∇f(y)∥2

= Ei
[
∥∇fi(y)−∇fi(x̃)∥2

]
+ 2 ⟨∇f(y), D∇f(x̃)⟩ − ⟨∇f(x̃), D∇f(x̃)⟩ − ∥∇f(y)∥2

(c)

≤ 2L
(
f(x̃)− f(y)− ⟨∇f(y), x̃− y⟩

)
+ 2 ⟨∇f(y), D∇f(x̃)⟩ − ⟨∇f(x̃), D∇f(x̃)⟩

− ∥∇f(y)∥2 ,

where (a) uses the unbiasedness Ei [Gy] = ∇f(y), (b) follows from that ∇fi(y) −
∇fi(x̃) is supported on Ti and P

2
i = Pi, and (c) uses the interpolation condition.

121

122 APPENDIX C. APPENDIX FOR CHAPTER 4

C.2 Proof of Theorem 11

We omit the superscript s in the one-epoch analysis for clarity. Using convexity, we
have

f(yk)− f(x⋆)
≤ ⟨∇f(yk), yk − x⋆⟩
= ⟨∇f(yk), yk − zk⟩+ ⟨∇f(yk), zk − x⋆⟩
(⋆)

≤ 1− ϑ
ϑ
⟨∇f(yk), x̃s − yk⟩ −

φ

ϑ
⟨∇f(yk), D∇f(x̃s)⟩+ ⟨∇f(yk), zk − x⋆⟩ , (C.1)

where (⋆) follows from the construction yk = ϑzk + (1− ϑ) x̃s − φD∇f(x̃s).
Denote Gyk = ∇fik(yk) − ∇fik(x̃s) + Dik∇f(x̃s). Based on the updating rule:

zk+1 = zk − η · Gyk , it holds that

∥zk+1 − x⋆∥2 = ∥zk − x⋆ − η · Gyk∥
2

⇒ ⟨Gyk , zk − x⋆⟩ =
η

2
∥Gyk∥

2 +
1

2η

(
∥zk − x⋆∥2 − ∥zk+1 − x⋆∥2

)
(⋆)⇒ ⟨∇f(yk), zk − x⋆⟩ =

η

2
Eik
[
∥Gyk∥

2]+ 1

2η

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
⇒ ⟨∇f(yk), zk − x⋆⟩ =

η

2
Eik
[
∥Gyk −∇f(yk)∥

2]+ η

2
∥∇f(yk)∥2

⇒ ⟨∇f(yk), zk − x⋆⟩ = +
1

2η

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
, (C.2)

where (⋆) follows from taking the expectation with respect to sample ik.
Combine (C.1), (C.2) and use the variance bound in Lemma 3.

f(yk)− f(x⋆) ≤ ηL
(
f(x̃s)− f(yk)

)
+

(
1− ϑ
ϑ
− ηL

)
⟨∇f(yk), x̃s − yk⟩

+
(
η − φ

ϑ

)
⟨∇f(yk), D∇f(x̃s)⟩ −

η

2
⟨∇f(x̃s), D∇f(x̃s)⟩

+
1

2η

(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
.

Substituting the choices η = 1−ϑ
Lϑ

and φ = ηϑ = 1−ϑ
L

and noting that D ≻ 0, we
obtain

f(yk)− f(x⋆) ≤ (1− ϑ)
(
f(x̃s)− f(x⋆)

)
+

Lϑ2

2(1− ϑ)
(
∥zk − x⋆∥2 − Eik

[
∥zk+1 − x⋆∥2

])
.

C.2. PROOF OF THEOREM 11 123

Summing the above inequality from k = 0 to m − 1 and noting that zs+1
0 = zsm,

we obtain

E
[
f(x̃s+1)− f(x⋆)

]
=

1

m

m−1∑
k=0

E
[
f(yk)− f(x⋆)

]
≤ (1− ϑ)E

[
f(x̃s)− f(x⋆)

]
+

Lϑ2

2m(1− ϑ)

(
E
[
∥zs0 − x⋆∥

2]− E
[∥∥zs+1

0 − x⋆
∥∥2]) .

Denoting Qs ≜ E
[
f(x̃s) − f(x⋆)

]
and Ps ≜ E

[
∥zs0 − x⋆∥

2], we can write the
above as

Qs+1 ≤
1− ϑ
ϑ

(Qs −Qs+1) +
Lϑ

2m(1− ϑ)
(Ps − Ps+1) .

Summing this inequality from s = 0 to S − 1 and using Jensen’s inequality, we
have

E
[
f(xr+1)− f(x⋆)

]
≤ 1

S

S−1∑
s=0

Qs+1

≤ 1− ϑ
ϑS

(Q0 −QS) +
Lϑ

2m(1− ϑ)S
(P0 − PS)

(⋆)

≤ 1− ϑ
ϑS

E
[
f(xr)− f(x⋆)

]
+

Lϑ

2m(1− ϑ)S
E
[
∥xr − x⋆∥2

]
,

where (⋆) follows from x̃0 = z00 = xr.
Using µ-strong convexity at (xr, x

⋆) (or quadratic growth), f(xr) − f(x⋆) ≥
µ
2
∥xr − x⋆∥2, we arrive at

E
[
f(xr+1)− f(x⋆)

]
≤
(
1− ϑ
ϑS

+
κϑ

m(1− ϑ)S

)
E
[
f(xr)− f(x⋆)

]
.

Choosing S =
⌈
ω ·
(

1−ϑ
ϑ

+ κϑ
m(1−ϑ)

)⌉
, we have E

[
f(xr+1)−f(x⋆)

]
≤ 1

ω
·E
[
f(xr)−

f(x⋆)
]
. Thus, for any accuracy ϵ > 0 and any constant ω > 1, to guarantee

that the output satisfies E
[
f(xR)

]
− f(x⋆) ≤ ϵ, we need to perform totally R =

O
(
log f(x0)−f(x⋆)

ϵ

)
restarts. Note that the total oracle complexity of Algorithm 8

is #grad = R · S · (n + 2m). Setting m = Θ(n) and minimizing S with re-

spect to ϑ, we obtain the optimal choice ϑ =
√
m√

κ+
√
m
. In this case, we have

S =
⌈
2ω
√

κ
m

⌉
= O

(
max

{
1,
√

κ
n

})
. Finally, the total oracle complexity is

#grad = O

(
max

{
n,
√
κn
}
log

f(x0)− f(x⋆)
ϵ

)
.

124 APPENDIX C. APPENDIX FOR CHAPTER 4

C.3 Proof of Theorem 12

We use the following lemma from [83] to bound the term in asynchrony. Although
the gradient is evaluated at a different point, the same proof works in our case, and
thus is omitted here.

Lemma 6 (Inequality (63) in [83]). We have the following bound for the iterates zk
(defined at (4.4)) and ẑk (defined at (4.6)) in one epoch of Algorithm 9:

E
[
⟨Gŷk , ẑk − zk⟩

]
≤
√
∆η

2

 k−1∑
j=(k−τ)+

E
[∥∥Gŷj∥∥2]+ τE

[
∥Gŷk∥

2] .

We start with analyzing one epoch of virtual iterates defined at (4.4): zk+1 =
zk − η · Gŷk . The expectation is first taken conditioned on the previous epochs.

∥zk+1 − x⋆∥2 = ∥zk − x⋆ − η · Gŷk∥
2

⇒ ⟨Gŷk , ẑk − x⋆⟩+ ⟨Gŷk , zk − ẑk⟩ =
η

2
∥Gŷk∥

2 +
1

2η

(
∥zk − x⋆∥2 − ∥zk+1 − x⋆∥2

)
(⋆)⇒ E

[
⟨∇f(ŷk), ẑk − x⋆⟩

]
=
η

2
E
[
∥Gŷk∥

2]+ E
[
⟨Gŷk , ẑk − zk⟩

]
(⋆)⇒ E

[
⟨∇f(ŷk), ẑk − x⋆⟩

]
= +

1

2η

(
E
[
∥zk − x⋆∥2

]
− E

[
∥zk+1 − x⋆∥2

])
, (C.3)

where (⋆) follows from taking the expectation and the unbiasedness assumption
E
[
Gŷk |ẑk

]
= ∇f(ŷk).

Using the convexity at x⋆ and the inconsistent ŷk (ordered at (4.5)), we have

f(ŷk)− f(x⋆)
≤ ⟨∇f(ŷk), ŷk − x⋆⟩
= ⟨∇f(ŷk), ŷk − ẑk⟩+ ⟨∇f(ŷk), ẑk − x⋆⟩
(⋆)

≤ 1− ϑ
ϑ
⟨∇f(ŷk), x̃s − ŷk⟩ −

φ

ϑ
⟨∇f(ŷk), D∇f(x̃s)⟩+ ⟨∇f(ŷk), ẑk − x⋆⟩ .

where (⋆) follows from the construction ŷk = ϑẑk + (1− ϑ) x̃s − φD∇f(x̃s).
After taking the expectation and combining with (C.3), we obtain

E
[
f(ŷk)

]
− f(x⋆) ≤ 1− ϑ

ϑ
E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
− φ

ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
η

2
E
[
∥Gŷk∥

2]+ E
[
⟨Gŷk , ẑk − zk⟩

]
+

1

2η

(
E
[
∥zk − x⋆∥2

]
− E

[
∥zk+1 − x⋆∥2

])
.

C.3. PROOF OF THEOREM 12 125

Summing this inequality from k = 0 to m− 1, we have

m−1∑
k=0

E
[
f(ŷk)− f(x⋆)

]
≤

m−1∑
k=0

(
1− ϑ
ϑ

E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
− φ

ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
η

2
E
[
∥Gŷk∥

2])

+
m−1∑
k=0

E
[
⟨Gŷk , ẑk − zk⟩

]
+

1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

Invoke Lemma 6 to bound the asynchronous perturbation.

m−1∑
k=0

E
[
f(ŷk)− f(x⋆)

]
≤

m−1∑
k=0

(
1− ϑ
ϑ

E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
−φ
ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
η

2
E
[
∥Gŷk∥

2])

+

√
∆η

2

m−1∑
k=0

(k−1∑
j=(k−τ)+

E
[∥∥Gŷj∥∥2]+ τE

[
∥Gŷk∥

2])+ 1

2η

(
∥z0−x⋆∥2−E

[
∥zm−x⋆∥2

])
=

m−1∑
k=0

(
1− ϑ
ϑ

E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
− φ

ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
η(1 +

√
∆τ)

2
E
[
∥Gŷk∥

2])+

√
∆η

2

m−1∑
k=0

k−1∑
j=(k−τ)+

E
[∥∥Gŷj∥∥2]

+
1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
≤

m−1∑
k=0

(
1− ϑ
ϑ

E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
−φ
ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
η(1+

√
∆τ)

2
E
[
∥Gŷk∥

2])+√∆ητ
2

m−1∑
k=0

E
[
∥Gŷk∥

2]+ 1

2η

(
∥z0−x⋆∥2−E

[
∥zm−x⋆∥2

])
=

m−1∑
k=0

(
1− ϑ
ϑ

E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
−φ
ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
η(1 + 2

√
∆τ)

2
E
[
∥Gŷk∥

2])+
1

2η

(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

126 APPENDIX C. APPENDIX FOR CHAPTER 4

For any m ≥ τ̃ ≥ τ , we choose η = (1−ϑ)
Lϑ(1+2

√
∆τ̃)

, and then

m−1∑
k=0

E
[
f(ŷk)− f(x⋆)

]
≤

m−1∑
k=0

(
1−ϑ
ϑ

E
[
⟨∇f(ŷk), x̃s − ŷk⟩

]
−φ
ϑ
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+
1−ϑ
2Lϑ

E
[
∥Gŷk∥

2])
+
Lϑ(1 + 2

√
∆τ̃)

2(1− ϑ)
(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

Note that E
[
∥Gŷk∥

2] = E
[
∥Gŷk −∇f(ŷk)∥

2]+E
[
∥∇f(ŷk)∥2

]
due to the unbiased-

ness assumption. Using Lemma 3, we can conclude that

m−1∑
k=0

E
[
f(ŷk)− f(x⋆)

]
≤

m−1∑
k=0

((
1− ϑ
Lϑ

− φ

ϑ

)
E
[
⟨∇f(ŷk), D∇f(x̃s)⟩

]
+

1− ϑ
ϑ

(
f(x̃s)− E

[
f(ŷk)

]))
+
Lϑ(1 + 2

√
∆τ̃)

2(1− ϑ)
(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

Choosing φ = 1−ϑ
L

and dividing both sides by m, we can arrange this inequality
as

1

m

m−1∑
k=0

E
[
f(ŷk)− f(x⋆)

]
≤ (1− ϑ)

(
f(x̃s)− f(x⋆)

)
+
Lϑ2(1 + 2

√
∆τ̃)

2m(1− ϑ)
(
∥z0 − x⋆∥2 − E

[
∥zm − x⋆∥2

])
.

Since x̃s+1 is chosen uniformly at random from {ŷ0, . . . , ŷm−1} and that zs+1
0 = zsm

(the first and the last virtual iterates exist in the shared memory, and z is unchanged
after each epoch in Algorithm 9), the following holds

E
[
f(x̃s+1)− f(x⋆)

]
≤ (1− ϑ)

(
f(x̃s)− f(x⋆)

)
+
Lϑ2(1 + 2

√
∆τ̃)

2m(1− ϑ)

(
∥zs0 − x⋆∥

2 − E
[∥∥zs+1

0 − x⋆
∥∥2]) .

C.3. PROOF OF THEOREM 12 127

For the sake of clarity, we denote Qs ≜ E
[
f(x̃s)−f(x⋆)

]
and Ps ≜ E

[
∥zs0 − x⋆∥

2].
Then, it holds that

Qs+1 ≤
1− ϑ
ϑ

(Qs −Qs+1) +
Lϑ(1 + 2

√
∆τ̃)

2m(1− ϑ)
(Ps − Ps+1) .

Summing this inequality from s = 0 to S − 1 and using Jensen’s inequality, we
have

E
[
f(xr+1)

]
− f(x⋆) ≤ 1

S

S−1∑
s=0

Qs+1

≤ 1− ϑ
ϑS

(Q0 −QS) +
Lϑ(1 + 2

√
∆τ̃)

2m(1− ϑ)S
(P0 − PS)

≤ 1− ϑ
ϑS

Q0 +
Lϑ(1 + 2

√
∆τ̃)

2m(1− ϑ)S
P0.

Using µ-strong convexity at (xr, x
⋆) (or quadratic growth), we have ∥xr − x⋆∥2 ≤

2
µ

(
f(xr)− f(x⋆)

)
⇔ P0 ≤ 2

µ
Q0 and thus

E
[
f(xr+1)

]
− f(x⋆) ≤

(
1− ϑ
ϑS

+
κϑ(1 + 2

√
∆τ̃)

m(1− ϑ)S

)
E
[
f(xr)− f(x⋆)

]
,

Letting S =
⌈
ω ·
(

1−ϑ
ϑ

+ κϑ(1+2
√
∆τ̃)

m(1−ϑ)

)⌉
, we have E

[
f(xr+1)

]
−f(x⋆) ≤ 1

ω
·E
[
f(xr)−

f(x⋆)
]
. Then, since ω > 1 is a constant, to achieve an ϵ-additive error, we need to

restart totally R = O
(
log f(x0)−f(x⋆)

ϵ

)
times. Note that the total oracle complexity

of Algorithm 9 is #grad = R · S · (n+ 2m). Setting m = Θ(n) and choosing ϑ that

minimizes S, we obtain the optimal choice ϑ =
√
m√

κ(1+2
√
∆τ̃)+

√
m
, which leads to

S =

⌈
2ω

√
κ

m
(1 + 2

√
∆τ̃)

⌉
= O

(
max

{
1,

√
κ

n
(1 + 2

√
∆τ̃)

})
.

Finally, the total oracle complexity is

#grad = O

(
max

{
n,

√
κn(1 + 2

√
∆τ̃)

}
log

f(x0)− f(x⋆)
ϵ

)
.

128 APPENDIX C. APPENDIX FOR CHAPTER 4

C.4 The Effect of the Constant ω

0 50 100 150 200 250 300 350 400 450

10-10

10-5

Figure C.1: The practical effect of ω. RCV1.train, run 10 seeds. The circle marks the
restarting points, i.e., {xr}. Shaded bands indicate ±1 standard deviation.

We numerically evaluate the effect of the constant ω in Figure C.1. We choose ω
from 1.5 (frequent restart) to 50 (not restart in this task). The results on the News20
and KDD2010.S datasets are basically identical, and thus are omitted here. As we
can see, unfortunately, the restarts only deteriorate the performance. An intuitive
explanation is that the restart strategy is more conservative as it periodically retracts
the point. In theory, the explicit dependence on ω (in the serial case) is

1

logω

⌈
2ω

√
κ

m

⌉
,

which suggests that if ω is large, the convergence on the restarting points {xr} will
be slower. This is observed in Figure C.1. However, what our current theory cannot
explain is the superior performance of not performing restart, and we are not aware
of a situation where the “aggressiveness” of no restart would hurt the convergence.
Optimally tuning ω in the complexity will only lead to a small ω that is close to 1.
Further investigation is needed for the convergence of Algorithms 8 and 9 without
restart (we have strong numerical evidence in Appendix C.5 that without restart,
they are still optimal).

C.5. JUSTIFYING THE
√
κ DEPENDENCE 129

C.5 Justifying the
√
κ Dependence

0 50 100 150 200 250 300

10-10

10-5

(a) KDD2010.S, µ = 10−6.

0 50 100 150 200 250 300

10-10

10-5

(b) RCV1.train, µ = 10−5.

0 50 100 150 200 250 300

10-10

10-5

(c) News20, µ = 10−5.

0 50 100 150 200 250 300 350

10-10

10-5

(d) KDD2010.S, µ = 10−7.

0 50 100 150 200 250 300

10-10

10-5

(e) RCV1.train, µ = 10−6.

0 50 100 150 200 250 300

10-10

10-5

(f) News20, µ = 10−6.

Figure C.2: Justifying the
√
κ dependence. Run 10 seeds. Shaded bands indicate

±1 standard deviation.

We choose µ to be 10-times larger (Figures C.2a to C.2c) than the ones specified
in Table 4.1 (Figures C.2d to C.2f) to verify the

√
κ dependence. In this case, κ is

10-times smaller and we expect the accelerated methods to be around 3-times faster
in terms of the number of data passes. This has been observed across all the datasets
for Katyusha and SS-Acc-SVRG, which verifies the accelerated rate.

130 APPENDIX C. APPENDIX FOR CHAPTER 4

C.6 Sanity Check for Our Implementation

0 50 100 150

10-10

10-5

Figure C.3: Sanity check. a9a.dense, µ = 10−6. Run 20 seeds. Shaded bands indicate
±1 standard deviation.

If the dataset is fully dense, then the following three schemes should be equiva-
lent: SS-Acc-SVRG, SS-Acc-SVRG with lagged update implementation and AS-
Acc-SVRG with a single thread. We construct a fully dense dataset by adding a
small positive number to each elements in the a9a dataset [20] (n = 32 561, d = 123),
and we name this dataset as a9a.dense. The sanity check is then provided in Fig-
ure C.3. SS-Acc-SVRG (LU) shows slightly different convergence because we used
an averaged snapshot instead of a random one in its implementation. Implementing
lagged update technique with a random snapshot is quite tricky, since the last seen
iteration might be in the previous epochs in this case. We tested SS-Acc-SVRG with
an averaged snapshot and it shows almost identical convergence as SS-Acc-SVRG
(LU).

C.7 Experimental Setup

All the methods are implemented in C++.

Serial setup We ran serial experiments on an HP Z440 machine with a single
Intel Xeon E5-1630v4 with 3.70GHz cores, 16GB RAM, Ubuntu 18.04 LTS with
GCC 9.4.0, MATLAB R2021a. We fixed the epoch length m = 2n and chose the
default parameters: SS-Acc-SVRG follows Theorem 8; Katyusha uses τ2 = 1

2
, τ1 =√

m
3κ
, α = 1

3τ1L
[4]; SVRG uses η = 1

4L
.

C.7. EXPERIMENTAL SETUP 131

Asynchronous setup We ran asynchronous experiments on a Dell PowerEdge
R840 HPC with four Intel Xeon Platinum 8160 CPU @ 2.10GHz each with 24 cores,
768GB RAM, CentOS 7.9.2009 with GCC 9.3.1, MATLAB R2021a. We implemented
the original version of KroMagnon in [98]. We fixed the epoch length m = 2n
for KroMagnon and AS-Acc-SVRG. AS-Acc-SVRG used the same parameters as
in the serial case for all datasets. The step sizes of KroMagnon and ASAGA were
chosen as follows: On RCV1.full, KroMagnon uses 1

L
, ASAGA uses 1

1.3L
; on Avazu-site,

KroMagnon uses 1
2L
, ASAGA uses 1

2L
; on KDD2010, KroMagnon uses 1

2L
, ASAGA

uses 1
3L
. Due to the scale of the tasks, we cannot do fine-grained grid search for

the step sizes of KroMagnon and ASAGA. They were chosen to ensure a stable and
consistent performance in the 20-thread experiments.

Appendix D

Appendix for Chapter 5

D.1 Extra Experimental Results

In this appendix, we provide more experimental results to further evaluate the Amor-
tized Nesterov’s Momentum.

• Table D.1 shows the detailed data of the parameter sweep experiments, where
the convergence curves of these results are given in Appendix D.1.2.

• In Appendix D.1.1, we discuss our implementations of AM1-SGD and AM2-
SGD .

• In Appendix D.1.3, we report the results of a full-batch loss experiment using
ResNet18.

• In Appendix D.1.4, we compare the robustness of AM1-SGD and M-SGD on
large momentum parameters.

• In Appendix D.1.5, we empirically compare the Amortized Nesterov’s Momen-
tum with classical momentum [123], aggregated momentum [95] and quasi-
hyperbolic momentum [96].

• In Appendix D.1.6, we discuss the issues with learning rate schedulers.

• In Appendix D.1.7, we provide a CIFAR-100 experiment.

• In Appendix D.1.8, we add some convex experiments.

• In Appendix D.1.9, we provide a sanity check for our implementation.

132

D.1. EXTRA EXPERIMENTAL RESULTS 133

Table D.1: Final test accuracy and average accuracy STD of training ResNet34 on
CIFAR-10 over 5 runs (including the detailed data of the curves in Figure 5.2 and
Figure 5.3a). For all the methods, η0 = 0.1, β = 0.9. Multiple runs start with the
same x0.

METHOD DESCRIPTION FINAL ACCURACY Avg. STD

SGD Standard Pytorch 93.41%± 0.15% 0.99%

M-SGD Standard Pytorch 94.61%± 0.15% 1.04%

AM1-SGD Option I, m = 1, sanity check 94.67%± 0.14% 0.91%

AM1-SGD Option I, m = 3 94.63%± 0.03% 0.64%

AM1-SGD Option I, m = 5 94.60%± 0.10% 0.50%

AM1-SGD Option I, m = 7 94.64%± 0.13% 0.44%

AM1-SGD Option I, m = 10 94.54%± 0.13% 0.44%

AM1-SGD Option I, m = 20 94.38%± 0.22% 0.40%

AM1-SGD Option I, m = 30 94.30%± 0.15% 0.43%

OM-SGD AM1-SGD (Opt. II, m = 1) 94.73%± 0.11% 0.63%

AM1-SGD Option II, m = 3 94.66%± 0.14% 0.41%

AM1-SGD Option II, m = 5 94.60%± 0.08% 0.27%

AM1-SGD Option II, m = 7 94.51%± 0.10% 0.28%

AM1-SGD Option II, m = 10 94.42%± 0.12% 0.29%

AM1-SGD Option II, m = 20 94.36%± 0.18% 0.31%

AM1-SGD Option II, m = 30 94.27%± 0.13% 0.34%

AM2-SGD Option I, m = 1, sanity check 94.68%± 0.21% 0.82%

AM2-SGD Option I, m = 5 94.57%± 0.19% 0.59%

AM2-SGD Option I, m = 10 94.44%± 0.14% 0.74%

AM2-SGD Option I, m = 20 94.31%± 0.15% 0.74%

AM2-SGD Option II, m = 5 94.66%± 0.11% 0.26%

AM2-SGD Option II, m = 10 94.50%± 0.21% 0.28%

AM2-SGD Option II, m = 20 94.41%± 0.14% 0.25%

134 APPENDIX D. APPENDIX FOR CHAPTER 5

D.1.1 Implementing AM1-SGD and AM2-SGD

Similar to M-SGD, it is easier to implement Option I in existing deep learning frame-
works. To implement Option II, we can either maintain another identical network
for the shifted point (x̃ or ϕ̄) or temporarily change the network parameters in the
evaluation phase. In our implementations of AM1-SGD and AM2-SGD, we simply
adopt the latter solution.

Algorithm 17 AM1-SGD (Algorithm 11 with improved efficiency)

Input: Initial guess x0, learning rate η, momentum β, amortization length m, iter-
ation number K.

Initialize: x← x0, x̃← x0, ṽ
+ ← −m · x0.

1: for k = 0, . . . , K − 1 do
2: x← x− η · ∇fik(x).
3: ṽ+ ← ṽ+ + x.
4: if (k + 1) mod m = 0 then
5: x← x+ (β/m) · ṽ+.
6: x̃← x̃+ (1/m) · ṽ+, ṽ+ ← −m · x̃.
7: end if
8: end for

Output: Option I: x, Option II: x̃.

For AM1-SGD, we can improve the efficiency of Algorithm 11 by maintaining a
running scaled momentum ṽ+ ≜ m · (x̃+ − x̃) instead of the running average x̃+ as
shown in Algorithm 17. Then, in one m-iterations loop, for each of the first m − 1
iterations, AM1-SGD requires 1 vector addition and 1 scaled vector addition. At
the m-th iteration, it requires 1 vector addition, 1 scalar-vector multiplication and 3
scaled vector additions. In comparison, M-SGD (standard PyTorch) requires 1 vector
addition, 1 (in-place) scalar-vector multiplication and 2 scaled vector additions per
iteration. Thus, as long as m > 2, AM1-SGD has lower amortized cost than M-SGD.
In terms of memory complexity, AM1-SGD requires one more auxiliary buffer than
M-SGD. For AM2-SGD, we implement Algorithm 13. Note that at each iteration,
we sample an index in [m] as jk+1 and obtain the stored index jk.

D.1. EXTRA EXPERIMENTAL RESULTS 135

D.1.2 The Effect of m on Convergence

We show in Figure D.1 how m affects the convergence of test accuracy. The results
show that increasing m speeds up the convergence in the early stage. While for
AM1-SGD the convergences of Option I and Option II are similar, AM2-SGD with
Option II is consistently better than with Option I in this experiment. It seems that
AM2-SGD with Option I does not benefit from increasing m and the algorithm is
not robust. Thus, we do not recommend using Option I for AM2-SGD.

0 20 40 60 80
Epoch

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD
AM1-SGD-I-3
AM1-SGD-I-5
AM1-SGD-I-7
AM1-SGD-I-10
AM1-SGD-I-20
AM1-SGD-I-30

0 20 40 60 80
Epoch

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD
AM1-SGD-II-3
AM1-SGD-II-5
AM1-SGD-II-7
AM1-SGD-II-10
AM1-SGD-II-20
AM1-SGD-II-30

0 20 40 60 80
Epoch

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD
AM2-SGD-I-5
AM2-SGD-I-10
AM2-SGD-I-20
AM2-SGD-II-5
AM2-SGD-II-10
AM2-SGD-II-20

Figure D.1: Convergence of test accuracy from the parameter sweep experiments in
Table D.1. Labels are formatted as ‘AM1/2-SGD-{Option}-{m}’.

D.1.3 Full-batch Loss Experiment

We did a full-batch loss experiment of training ResNet18 with pre-activation [54] on
CIFAR-10 in Figure D.2 & Table D.2. The accuracy results are given in Figure D.3
& Table D.3. These results are reminiscent of the ResNet34 experiments (Figure 5.3b
and Table 5.1).

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fu
ll-

Ba
tc

h
Tr

ai
n

Lo
ss

Full-Batch Train Loss
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

0 20 40 60 80
Epoch

0.00

0.05

0.10

0.15

0.20

Fu
ll-

Ba
tc

h
Tr

ai
n

Lo
ss

 S
TD

Full-Batch Train Loss STD
SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

METHOD Avg. STD

SGD 0.033

M-SGD 0.034

AM1-SGD-I 0.014

AM1-SGD-II 0.006

Figure D.2 & Table D.2: ResNet18 with pre-activation on CIFAR-10. For all meth-
ods, η0 = 0.1, β = 0.9, run 20 seeds. For AM1-SGD, m = 5 and its labels are
formatted as ‘AM1-SGD-{Option}’. Shaded bands indicate ±1 standard deviation.

136 APPENDIX D. APPENDIX FOR CHAPTER 5

0 20 40 60 80
Epoch

75

80

85

90
Te

st
 A

cc
ur

ac
y%

Test Accuracy

SGD
M-SGD
AM1-SGD-I
AM1-SGD-II

METHOD FINAL ACCURACY Avg. STD

SGD 92.81%± 0.15% 1.01%

M-SGD 94.06%± 0.17% 1.10%

AM1-SGD-I 93.97%± 0.15% 0.54%

AM1-SGD-II 93.95%± 0.19% 0.32%

Figure D.3 & Table D.3: ResNet18 with pre-activation on CIFAR-10. For all meth-
ods, η0 = 0.1, β = 0.9, run 20 seeds. For AM1-SGD, m = 5. Shaded bands indicate
±1 standard deviation.

D.1.4 Robustness on Large Momentum Parameters

We compare the robustness of M-SGD and AM1-SGD when β is large in Figure D.4
& Table D.4. AM1-SGD uses Option I, which omits the tail averaging effect at the
output point. As we can see, the STD error of M-SGD scales up significantly when β
is larger and the performance is more affected by a large β compared with AM1-SGD.

0 20 40 60 80
Epoch

50

60

70

80

90

Te
st

 A
cc

ur
ac

y%

Test Accuracy

M-SGD-0.9
M-SGD-0.95
M-SGD-0.99
AM1-SGD-0.9
AM1-SGD-0.95
AM1-SGD-0.99

METHOD FINAL ACCURACY Avg. STD

M-SGD-0.9 94.61%± 0.15% 1.04%

M-SGD-0.95 94.20%± 0.12% 1.20%

M-SGD-0.99 88.37%± 0.36% 2.56%

AM1-SGD-0.9 94.60%± 0.10% 0.50%

AM1-SGD-0.95 93.94%± 0.07% 0.58%

AM1-SGD-0.99 90.64%± 0.38% 0.90%

Figure D.4 & Table D.4: ResNet34 on CIFAR-10. η0 = 0.1, β ∈ {0.9, 0.95, 0.99}, run
5 seeds (the β = 0.9 results are copied from Table D.1). Labels are formatted as
“{Algorithm}-{β}”.

D.1. EXTRA EXPERIMENTAL RESULTS 137

D.1.5 Comparison with Other Momentum

In this section, we compare AM1-SGD (Option I) with classical momentum [123],
AggMo [95] and QHM [96] in our basic case study (training ResNet34 on CIFAR-10).
Since we are not aware of what makes a fair comparison with these methods (e.g.,
it is not clear what is the effective learning rate for AM1-SGD), we compare them
based on the default hyper-parameter settings suggested by their papers.

0 20 40 60 80
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y%

Test Accuracy

CM-SGD
AM1-SGD
AggMo
QHM

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
CM-SGD
AM1-SGD
AggMo
QHM

METHOD FINAL ACCURACY Avg. STD

CM-SGD 94.69%± 0.21% 1.11%

AM1-SGD 94.60%± 0.10% 0.50%

AggMo 94.56%± 0.14% 0.78%

QHM 94.43%± 0.23% 1.07%

M-SGD 94.61%± 0.15% 1.04%

Figure D.5 & Table D.5: ResNet34 on CIFAR-10. Run 5 seeds. The results of AM1-
SGD and M-SGD are copied from Table D.1.

Classical Momentum The SGD with classical momentum (CM-SGD) that is
widely used in deep learning has the following scheme (standard PyTorch) (vcm ∈
Rd, vcm0 = 0⃗):

vcmk+1 = β · vcmk +∇fik(xk),
xk+1 = xk − η · vcmk+1, for k ≥ 0.

CM-SGD with its typical hyper-parameter settings (η0 = 0.1, β = 0.9) is observed to
achieve similar generalization performance as M-SGD. However, CM-SGD is more
unstable and prone to oscillations [95], which makes it less robust than M-SGD as
shown in Table D.5.

Aggregated Momentum (AggMo) AggMo uses multiple momentum buffers,
which is inspired by the passive damping from physics literature [95]. AggMo uses

138 APPENDIX D. APPENDIX FOR CHAPTER 5

the following update rules (for t = 1, . . . , T , v(t) ∈ Rd, v
(t)
0 = 0⃗):

v
(t)
k+1 = β(t) · v(t)k −∇fik(xk), for t = 1, . . . , T,

xk+1 = xk +
η

T
·

T∑
t=1

v
(t)
k+1, for k ≥ 0.

We used the exponential hyper-parameter setting recommended in the original work
with the scale-factor a = 0.1 fixed, β(t) = 1 − at−1, for t = 1, . . . , T and choosing T
in {2, 3, 4}. We found that T = 2 gave the best performance in this experiment. As
shown in Figure D.5 & Table D.5, with the help of passive damping, AggMo is more
stable and robust compared with CM-SGD.

Quasi-hyperbolic Momentum (QHM) Ma and Yarats [96] introduce the im-
mediate discount factor ν ∈ R for the momentum scheme, which results in the QHM
update rules (α ∈ R, vqh ∈ Rd, vqh0 = 0⃗):

vqhk+1 = β · vqhk + (1− β) · ∇fik(xk),
xk+1 = xk − α · (ν · vqhk+1 + (1− ν) · ∇fik(xk)), for k ≥ 0.

Here we used the recommended hyper-parameter setting for QHM (α0 = 1.0, β =
0.999, ν = 0.7).

Figure D.5 shows that AM1-SGD, AggMo and QHM achieve faster convergence in
the early stage while CM-SGD has the highest final accuracy. In terms of robustness,
huge gaps are observed when comparing AM1-SGD with the remaining methods in
Table D.5. Note that AM1-SGD is more efficient than both QHM and AggMo, and
is as efficient as CM-SGD.

We also plot the convergence of train-batch loss for all the methods in Figure D.5.
Despite of showing worse generalization performance, both QHM and AggMo per-
form better on reducing the train-batch loss in this experiment, which is consistent
with the results reported in Ma and Yarats [96], Lucas et al. [95].

D.1. EXTRA EXPERIMENTAL RESULTS 139

D.1.6 Issues with Learning Rate Schedulers

0 20 40 60 80
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD
AM1-SGD+

(a) β = 0.95

0 20 40 60 80
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD
AM1-SGD+

(b) β = 0.995

0 20 40 60 80
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM2-SGD
AM2-SGD+

(c) β = 0.995

Figure D.6: ResNet18 on CIFAR-10. η0 = 0.1, β ∈ {0.95, 0.995}. ‘+’ represents
performing a restart after each learning rate reduction.

0 20 40 60 80
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD

Figure D.7: ResNet18 on
CIFAR-10. Using cosine an-
nealing scheduler (without
restarts), η0 = 0.1, β =
0.995.

We show in Figure D.6 that when β is large for the
task, using step learning rate scheduler with decay fac-
tor 10, a performance drop is observed after each re-
duction. We fix this issue by performing a restart after
each learning rate reduction (labeled with ‘+’). We
plot the train-batch loss here because we find that the
phenomenon is clearer in this way. Note that output
options do not affect the convergence of train-batch
loss, and thus this phenomenon exists for both options.
If β = 0.9, there is no observable performance drop in
this experiment.

For smooth-changing schedulers such as the co-
sine annealing scheduler [94], the amortized momen-
tum works well as shown in Figure D.7.

D.1.7 CIFAR-100 Experiment

We report the results of training DenseNet121 [60] on CIFAR-100 in Figure D.8,
which shows that both AM1-SGD and AM2-SGD perform well before the final learn-
ing rate reduction. However, the final accuracies are lowered around 0.6% compared
with M-SGD. We also notice that SGD reduces the train-batch loss at an incredibly
fast rate and the losses it reaches are consistently lower than other methods in the
entire 300 epochs. However, this performance is not reflected in the convergence of

140 APPENDIX D. APPENDIX FOR CHAPTER 5

test accuracy. We believe that this phenomenon suggests that the DenseNet model
is actually “overfitting” M-SGD (since in the ResNet experiments, M-SGD always
achieves a lower train loss than SGD after the final learning rate reduction).

0 50 100 150 200 250 300
Epoch

50

55

60

65

70

75

80
Te

st
 A

cc
ur

ac
y%

Test Accuracy

SGD
M-SGD
AM1-SGD
AM2-SGD

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
SGD
M-SGD
AM1-SGD
AM2-SGD

Figure D.8: DenseNet121 on CIFAR-100. For all methods, η0 = 0.1, β = 0.9, run 3
seeds. AM1-SGD and AM2-SGD use Option II and m = 5. Shaded bands indicate
±1 standard deviation.

D.1.8 Convex Experiments

We provide empirical results for AM1-SGD (Algorithm 10) to justify its convergence
guarantee (Theorem 13). We consider the following simple convex empirical risk
minimization task (x ∈ Rn, ai ∈ Rn, bi ∈ {−1,+1},∀i ∈ [|D|]):

Logistic Regression: f(x) =
1

|D|

|D|∑
i=1

log
(
1 + exp (−bi ⟨ai, x⟩)

)
.

We used the a5a dataset (|D| = 6414, n = 123) from LIBSVM [20]. By normalizing
the dataset, we have L = 0.25,M = 0 in Assumption (a). The stochastic gradient
oracle is defined as ∇fi(x) = ∇f(x) + δ, where δ is sampled uniformly from the
sphere B(0, σ) (which is centered at 0 and its radius is σ). This oracle satisfies
Assumptions (b) and (c) (and also the “light tail” assumption). This type of noise
is frequently used to escape saddle points in non-convex optimization or to ensure
differential privacy. We fixed x0 = 0 and estimated Vd(x

⋆, x0) = 1
2
∥x0 − x⋆∥22 as

350 by running a small amount of iterates. Then we can run AM1-SGD with the
parameter choices specified in Theorem 13.

We compared AM1-SGD with M-SGD (or AC-SA, which corresponds to choosing
m = 1). In Theorem 13, when σ is large, AM1-SGD is expected to converge faster
than M-SGD and it also has a smaller deviation predicted by Theorem 13b. We
justify these predictions in Figure D.9.

D.1. EXTRA EXPERIMENTAL RESULTS 141

0 200 400 600 800 1000
Oracle Calls

0.45

0.50

0.55

0.60

0.65

0.70

Lo
ss

Logistic Regression, σ=1
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Lo
ss

Logistic Regression, σ=5
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.60

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=20
M-SGD
AM1-SGD

Figure D.9: Comparisons between AM1-SGD and M-SGD (AC-SA) in different noise
levels. m = 10, run 10 seeds. Shaded bands indicate ±1 standard deviation.

We also studied the effect of choosing different m in Figure D.10. The results
are similar to the deep learning experiment in Figure 5.3a (right): m needs to be
sufficiently large to show the effect, and after some point, not much benefit can be
obtained by further increasing m.

0 200 400 600 800 1000
Oracle Calls

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=25, m=5
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.62

0.64

0.66

0.68

Lo
ss

Logistic Regression, σ=25, m=10
M-SGD
AM1-SGD

0 200 400 600 800 1000
Oracle Calls

0.62

0.64

0.66

0.68
Lo

ss

Logistic Regression, σ=25, m=20
M-SGD
AM1-SGD

Figure D.10: Effect of choosing different m. Run 10 seeds. Shaded bands indicate
±1 standard deviation.

142 APPENDIX D. APPENDIX FOR CHAPTER 5

D.1.9 Sanity Check

When m = 1, both AM1-SGD and AM2-SGD (Option I) are equivalent to M-SGD,
we plot their convergence in Figure D.11 as a sanity check (the detailed data is given
in Table D.1).

0 20 40 60 80
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y%
Test Accuracy

M-SGD
AM1-SGD-I-1
AM2-SGD-I-1

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n-
Ba

tc
h

Lo
ss

Train-Batch Loss
M-SGD
AM1-SGD-I-1
AM2-SGD-I-1

Figure D.11: Sanity check. Labels are formatted as ‘AM{1/2}-SGD-{Option}-{m}’.

We observed that when m = 1, both AM1-SGD and AM2-SGD have a lower STD
error than M-SGD. We believe that it is because they both maintain the iterates
without scaling, which is numerically more stable than M-SGD (M-SGD in standard
PyTorch maintains a scaled buffer, i.e., vptk = η−1β−1 · (yk − xk)).

D.2. TECHNICAL LEMMA 143

D.2 Technical Lemma

The following lemma is a known result for the martingale difference (cf. Lemma 2
in Lan et al. [80]):

Lemma 7. With N > 0, let ξ0, ξ1, . . . , ξN−1 be a sequence of i.i.d. random variables,
for t = 0, . . . , N − 1, σt > 0 be a deterministic number and ψt = ψt(ξ0, . . . , ξt) be a
deterministic measurable function such that Eξt

[
ψt
]
= 0 a.s. and Eξt

[
exp{ψ2

t /σ
2
t }
]
≤

exp{1} a.s.. Then for any Λ ≥ 0,

Prob



N−1∑
t=0

ψt ≥ Λ

√√√√N−1∑
t=0

σ2
t


 ≤ exp{−Λ2/3}.

D.3 Proof of Lemma 4

This Lemma is provided in a similar way as in Lan [78], Ghadimi and Lan [46], we
give a proof here for completeness.

Based on the convexity (Assumption (a)), we have

f(x)− f(x⋆) ≤ ⟨∇f(x), x− z⟩︸ ︷︷ ︸
R0

+ ⟨∇f(x)−∇fi(x), z − x⋆⟩︸ ︷︷ ︸
R1

+
〈
∇fi(x), z − z+

〉︸ ︷︷ ︸
R2

+
〈
∇fi(x), z+ − x⋆

〉︸ ︷︷ ︸
R3

.

(D.1)

We upper bound the terms on the right side one-by-one.

For R0,

R0
(⋆)
=

β

1− β
⟨∇f(x), y − x⟩ ≤ β

1− β
(
f(y)− f(x)

)
, (D.2)

where (⋆) uses the relation between x and z, i.e., (1− β) · (x− z) = β · (y − x).
For R2, based on Assumption (a), we have

f(y+)− f(x) +
〈
∇f(x), x− y+

〉
≤ L

2

∥∥x− y+∥∥2 +M
∥∥x− y+∥∥ .

Then, noting that x−y+ = (1−β) · (z−z+), we can arrange the above inequality

144 APPENDIX D. APPENDIX FOR CHAPTER 5

as

R2 ≤
L(1− β)

2

∥∥z − z+∥∥2 + 1

1− β
(
f(x)− f(y+)

)
+
〈
∇f(x)−∇fi(x), z+ − z

〉
+M

∥∥z − z+∥∥
≤ L(1− β)

2

∥∥z − z+∥∥2 + 1

1− β
(
f(x)− f(y+)

)
+
(
∥∇f(x)−∇fi(x)∥∗ +M

) ∥∥z − z+∥∥ .
Using Young’s inequality with ζ > 0, we obtain

R2 ≤
L(1− β) + ζ

2

∥∥z − z+∥∥2 + 1

1− β
(
f(x)− f(y+)

)
+

(∥∇f(x)−∇fi(x)∥∗ +M)2

2ζ
. (D.3)

For R3, based on the optimality condition of

proxαh
(
z, α · ∇fi(x)

)
≜ argmin

u∈X

{
Vd(u, z) + α ⟨∇fi(x), u⟩+ αh(u)

}
,

and denoting ∂h(z+) ∈ E∗ as a subgradient of h at z+, we have for any w ∈ X,〈
∇d(z+)−∇d(z) + α · ∇fi(x) + α · ∂h(z+), w − z+

〉
≥ 0,

〈
∇fi(x), z+ − w

〉
≤
〈
∂h(z+), w − z+

〉
+

1

α

〈
∇d(z+)−∇d(z), w − z+

〉
≤ h(w)− h(z+) + 1

α

〈
∇d(z+)−∇d(z), w − z+

〉
.

Choosing w = x⋆ and applying the triangle equality of Bregman divergence, we
obtain

R3 ≤ h(x⋆)− h(z+) + 1

α

〈
∇d(z+)−∇d(z), x⋆ − z+

〉
= h(x⋆)− h(z+) + 1

α

(
Vd(x

⋆, z)− Vd(x⋆, z+)− Vd(z+, z)
)

(⋆)

≤ h(x⋆)− h(z+) + 1

α

(
Vd(x

⋆, z)− Vd(x⋆, z+)
)
− 1

2α

∥∥z+ − z∥∥2 , (D.4)

where (⋆) follows from the 1-strong convexity of d, which implies that Vd(x, y) ≥
1
2
∥x− y∥2 , ∀x, y ∈ X.

D.3. PROOF OF LEMMA 4 145

Finally, by upper bounding (D.1) using (D.2), (D.3), (D.4), we conclude that

f(x)− f(x⋆) ≤ R1 +
β

1− β
(
f(y)− f(x)

)
+
L(1− β) + ζ − α−1

2

∥∥z − z+∥∥2
+

1

1− β
(
f(x)− f(y+)

)
+ h(x⋆)− h(z+)

+
(∥∇f(x)−∇fi(x)∥∗ +M)2

2ζ
+

1

α

(
Vd(x

⋆, z)− Vd(x⋆, z+)
)
,

After simplification,

1

1− β
(
f(y+)− f(x⋆)

)
≤ β

1− β
(
f(y)− f(x⋆)

)
+
L(1− β) + ζ − α−1

2

∥∥z − z+∥∥2
+ h(x⋆)− h(z+) + (∥∇f(x)−∇fi(x)∥∗ +M)2

2ζ
+R1

+
1

α

(
Vd(x

⋆, z)− Vd(x⋆, z+)
)
.

(D.5)

Note that with the convexity of h and y+ = (1− β) · z+ + β · y, we have

h(y+) ≤ (1− β)h(z+) + βh(y),

h(z+) ≥ 1

1− β
h(y+)− β

1− β
h(y).

Using the above inequality and choosing ζ = α−1−L(1−β) > 0⇒ α(1−β) < 1/L,
we can arrange (D.5) as

1

1− β
(
F (y+)− F (x⋆)

)
≤ β

1− β
(
F (y)− F (x⋆)

)
+

1

α

(
Vd(x

⋆, z)− Vd(x⋆, z+)
)

+
(∥∇f(x)−∇fi(x)∥∗ +M)2

2(α−1 − L(1− β))
+R1.

146 APPENDIX D. APPENDIX FOR CHAPTER 5

D.4 Proof of Theorem 13a

Using Assumption (c), Lemma 4 with

x = xk

z = zk

z+ = zk+1

y = x̃s

y+ = xk+1

α = αs

β = βs

, (D.6)

and taking expectation, if αs(1− βs) < 1/L, we have

1

1− βs
(
Eik [F (xk+1)]− F (x⋆)

)
+

1

αs
Eik [Vd(x

⋆, zk+1)]

≤ βs
1− βs

(
F (x̃s)− F (x⋆)

)
+

1

αs
Vd(x

⋆, zk) +
(σ +M)2

2(α−1
s − L(1− βs))

.

Summing the above inequality from k = sm, . . . , sm+m− 1, we obtain

1

(1− βs)m

m∑
j=1

(
E [F (xsm+j)]− F (x⋆)

)
+

1

αsm
E
[
Vd(x

⋆, z(s+1)m)
]

≤ βs
1− βs

(
F (x̃s)− F (x⋆)

)
+

1

αsm
Vd(x

⋆, zsm) +
(σ +M)2

2(α−1
s − L(1− βs))

,

Using the definition of x̃s+1 and convexity,

αs
1− βs

(
E [F (x̃s+1)]− F (x⋆)

)
+

1

m
E
[
Vd(x

⋆, z(s+1)m)
]

≤ αsβs
1− βs

(
F (x̃s)− F (x⋆)

)
+

1

m
Vd(x

⋆, zsm) +
αs(σ

2 +M2)

α−1
s − L(1− βs)

.

(D.7)

It can be verified that with the choices βs =
s
s+2

and αs =
λ1

L(1−βs) , the following
holds for s ≥ 0,

αs+1βs+1

1− βs+1

≤ αs
1− βs

and β0 = 0. (D.8)

D.4. PROOF OF THEOREM 13a 147

Thus, by telescoping (D.7) from s = S − 1, . . . , 0, we obtain

αS−1

1− βS−1

(
E [F (x̃S)]− F (x⋆)

)
+

1

m
E [Vd(x

⋆, zSm)]

≤ 1

m
Vd(x

⋆, x0) +
S−1∑
s=0

αs(σ
2 +M2)

α−1
s − L(1− βs)

,

and thus,

E [F (x̃S)]− F (x⋆) ≤
4L

λ1m(S + 1)2
Vd(x

⋆, x0) +
4L(σ2 +M2)

λ1(S + 1)2

S−1∑
s=0

α2
s

1− αs(1− βs)L

(a)

≤ 4L

λ1m(S + 1)2
Vd(x

⋆, x0) +
3λ1(σ

2 +M2)

L(S + 1)2

S−1∑
s=0

(s+ 2)2

(b)

≤ 4L

λ1m(S + 1)2
Vd(x

⋆, x0) +
8λ1(σ

2 +M2)(S + 1)

L
,

where (a) follows from λ1 ≤ 2
3
and (b) holds because 0 ≤ x 7→ (x + 2)2 is non-

decreasing and thus

S−1∑
s=0

(s+ 2)2 ≤
∫ S

0

(x+ 2)2dx ≤ (S + 2)3

3
≤ 8(S + 1)3

3
.

Denoting

λ⋆1 ≜
L
√
Vd(x⋆, x0)√

2m
√
σ2 +M2(S + 1)

3
2

,

and based on the choice of λ1 = min
{

2
3
, λ∗1
}
, if λ∗1 ≤ 2

3
, we have

E [F (x̃S)]− F (x⋆) ≤
8
√

2Vd(x⋆, x0)
√
σ2 +M2

m
1
2 (S + 1)

1
2

.

If λ∗1 >
2
3
,

E [F (x̃S)]− F (x⋆) ≤
6LVd(x

⋆, x0)

m(S + 1)2
+

4
√

2Vd(x⋆, x0)
√
σ2 +M2

m
1
2 (S + 1)

1
2

.

Thus, we conclude that

E [F (x̃S)]− F (x⋆) ≤
6LVd(x

⋆, x0)

m(S + 1)2
+

8
√

2Vd(x⋆, x0)
√
σ2 +M2

m
1
2 (S + 1)

1
2

.

Substituting S = K/m completes the proof.

148 APPENDIX D. APPENDIX FOR CHAPTER 5

D.5 Proof of Theorem 13b

To start with, using Lemma 4 with the parameter mapping (D.6), we have

1

1− βs
(
F (xk+1)− F (x⋆)

)
+

1

αs
Vd(x

⋆, zk+1)

≤ βs
1− βs

(
F (x̃s)− F (x⋆)

)
+

1

αs
Vd(x

⋆, zk)

+
(∥∇f(xk)−∇fik(xk)∥∗ +M)2

2(α−1
s − L(1− βs))

+ ⟨∇f(xk)−∇fik(xk), zk − x⋆⟩

≤ βs
1− βs

(
F (x̃s)− F (x⋆)

)
+

1

αs
Vd(x

⋆, zk) +
M2

α−1
s − L(1− βs)

+
∥∇f(xk)−∇fik(xk)∥

2
∗

α−1
s − L(1− βs)

+ ⟨∇f(xk)−∇fik(xk), zk − x⋆⟩ .

Summing the above inequality from k = sm, . . . , sm+m−1 and using the choice
αs =

λ1
L(1−βs) with λ1 ≤

2
3
, we obtain

αs
1− βs

(
F (x̃s+1)− F (x⋆)

)
+

1

m
Vd(x

⋆, z(s+1)m)

≤ αsβs
1− βs

(
F (x̃s)− F (x⋆)

)
+

1

m
Vd(x

⋆, zsm) + 3α2
sM

2

+
3α2

s

m

sm+m−1∑
k=sm

∥∇f(xk)−∇fik(xk)∥
2
∗ +

αs
m

sm+m−1∑
k=sm

⟨∇f(xk)−∇fik(xk), zk − x⋆⟩.

With our parameter choices, the relations in (D.8) hold and thus we can telescope
the above inequality from s = S − 1, . . . , 0,

αS−1

1− βS−1

(
F (x̃S)− F (x⋆)

)
≤ 1

m
Vd(x

⋆, x0) + 3M2

S−1∑
s=0

α2
s

+
3

m

K−1∑
k=0

α2
⌊k/m⌋ ∥∇f(xk)−∇fik(xk)∥

2
∗︸ ︷︷ ︸

R4

+
1

m

K−1∑
k=0

α⌊k/m⌋ ⟨∇f(xk)−∇fik(xk), zk − x⋆⟩︸ ︷︷ ︸
R5

.

(D.9)

D.5. PROOF OF THEOREM 13b 149

Denoting V2
k ≜ ∥∇f(xk)−∇fik(xk)∥

2
∗, ᾱ =

∑K−1
k=0 α

2
⌊k/m⌋ = m

∑S−1
s=0 α

2
s, for R4,

by Jensen’s inequality, we have

E

[
exp

{
1

ᾱ

K−1∑
k=0

α2
⌊k/m⌋V2

k/σ
2

}]
≤ 1

ᾱ

K−1∑
k=0

α2
⌊k/m⌋E

[
exp

{
V2
k/σ

2
}] (⋆)

≤ exp{1},

where (⋆) uses the additional assumption Eik [exp {V2
k/σ

2}] ≤ exp{1}.
Then, based on Markov’s inequality, we have for any Λ ≥ 0,

Prob

{{
exp

{
1

ᾱ

K−1∑
k=0

α2
⌊k/m⌋V2

k/σ
2

}
≥ exp{Λ + 1}

}}
≤ exp{−Λ},

Prob

{{
R4 ≥ (Λ + 1)σ2m

S−1∑
s=0

α2
s

}}
≤ exp{−Λ}. (D.10)

For R5, since we have Eik
[
α⌊k/m⌋ ⟨∇f(xk)−∇fik(xk), zk − x⋆⟩

]
= 0 and

Eik

[
exp

{
α2
⌊k/m⌋ ⟨∇f(xk)−∇fik(xk), zk − x⋆⟩

2

α2
⌊k/m⌋σ

2D2
X

}]
≤ Eik

[
exp

{
V2
k/σ

2
}]
≤ exp{1},

which is based on the “light tail” assumption, using Lemma 7, we obtain

Prob


R5 ≥ ΛσDX

√√√√m
S−1∑
s=0

α2
s


 ≤ exp{−Λ2/3}. (D.11)

Combining (D.9), (D.10) and (D.11), based on the parameter setting and using
the notation

K0(m) ≜
6LmVd(x

⋆, x0)

(K +m)2
+

8
√

2Vd(x⋆, x0)
√
σ2 +M2

√
K +m

,

R6 ≜
12Lσ2

λ1(S + 1)2

S−1∑
s=0

α2
s +

4LσDX

λ1(S + 1)2
√
m

√√√√S−1∑
s=0

α2
s,

we conclude that

Prob {{F (x̃S)− F (x⋆) ≤ K0(m) + ΛR6}} ≥ 1− (exp{−Λ2/3}+ exp{−Λ}).

150 APPENDIX D. APPENDIX FOR CHAPTER 5

For R6, using the choice of αs and λ1, we obtain

R6 ≤
4
√
6σDX

3
√
K +m

+
8λ1σ

2(S + 1)

L

≤ 4
√
6σDX

3
√
K +m

+
4
√
2Vd(x⋆, x0)σ

2

√
K +m

√
σ2 +M2

≤
4
√
6σ
(√

3Vd(x⋆, x0) +DX

)
3
√
K +m

,

which completes the proof.

D.6 Proof of Theorem 14

Using Assumption (c), Lemma 4 with

x = xjkk
z = zk

z+ = zk+1

y = ϕkjk
y+ = ϕk+1

jk

α = αk

β = βk

,

and taking expectation, if αk(1− βk) < 1/L, we have

1

1− βk
Eik,jk

[
F (ϕk+1

jk
)− F (x⋆)

]
+

1

αk
Eik,jk

[
Vd(x

⋆, zk+1)
]

≤ βk
1− βk

Ejk
[
F (ϕkjk)− F (x

⋆)
]
+

1

αk
Vd(x

⋆, zk) +
(σ +M)2

2(α−1
k − L(1− βk))

.
(D.12)

Note that

Eik,jk
[
F (ϕk+1

jk
)− F (x⋆)

]
= Eik,jk

[m∑
j=1

(
F (ϕk+1

j)− F (x⋆)
)
−

m∑
j ̸=jk

(
F (ϕkj)− F (x⋆)

)]
= Eik,jk

[m∑
j=1

(
F (ϕk+1

j)− F (x⋆)
)]
− Ejk

[m∑
j ̸=jk

(
F (ϕkj)− F (x⋆)

)]
.

D.6. PROOF OF THEOREM 14 151

Dividing (D.12) by m and then adding 1
(1−βk)m

Ejk
[∑m

j ̸=jk

(
F (ϕkj)− F (x⋆)

)]
to

both sides, we obtain

1

1− βk
Eik,jk

[1
m

m∑
j=1

F (ϕk+1
j)− F (x⋆)

]
+

1

αkm
Eik,jk

[
Vd(x

⋆, zk+1)
]

≤ − 1

m
Ejk
[
F (ϕkjk)− F (x

⋆)
]
+

1

1− βk

(
1

m

m∑
j=1

F (ϕkj)− F (x⋆)

)
+

1

αkm
Vd(x

⋆, zk)

+
(σ +M)2

2m(α−1
k − L(1− βk))

=
1− 1−βk

m

1− βk

(
1

m

m∑
j=1

F (ϕkj)− F (x⋆)

)
+

1

αkm
Vd(x

⋆, zk) (D.13)

+
(σ +M)2

2m(α−1
k − L(1− βk))

.

It can be verified that with our parameters choice: βk =
k/m
k/m+2

and αk =
λ2

L(1−βk)
,

the following holds for k ≥ 0,

αk+1

1− 1−βk+1

m

1− βk+1

≤ αk
1− βk

and β0 = 0.

Then, we can telescope (D.13) from k = K − 1, . . . , 0, which results in

αK−1

1− βK−1

E

[
1

m

m∑
j=1

F (ϕKj)− F (x⋆)

]
+

1

m
E [Vd(x

⋆, zK)]

≤ λ2(m− 1)

Lm

(
F (x0)− F (x⋆)

)
+

1

m
Vd(x

⋆, x0) +
K−1∑
k=0

αk(σ +M)2

2m(α−1
k − L(1− βk))

.

152 APPENDIX D. APPENDIX FOR CHAPTER 5

Using the definition of ϕ̄K and convexity, we obtain

E
[
F (ϕ̄K)− F (x⋆)

]
≤ 1− βK−1

αK−1

(
λ2(m− 1)

Lm

(
F (x0)− F (x⋆)

)
+

1

m
Vd(x

⋆, x0)

)
+

1− βK−1

αK−1

K−1∑
k=0

αk(σ +M)2

2m(α−1
k − L(1− βk))

(a)
=

4(m− 1)
(
F (x0)− F (x⋆)

)
m
(
K−1
m

+ 2
)2 +

4LVd(x
⋆, x0)

λ2m
(
K−1
m

+ 2
)2

+
3λ2(σ +M)2

2Lm
(
K−1
m

+ 2
)2 K−1∑

k=0

(
k

m
+ 2

)2

(b)

≤
4(m− 1)

(
F (x0)− F (x⋆)

)
m
(
K−1
m

+ 2
)2 +

4LVd(x
⋆, x0)

λ2m
(
K−1
m

+ 2
)2 +

4λ2(σ +M)2
(
K−1
m

+ 2
)

L
, (D.14)

where (a) uses λ2 ≤ 2
3
, (b) follows from simple integration arguments and that

K
m
+ 2 ≤ 2

(
K−1
m

+ 2
)
since K ≥ 1,m ≥ 1.

Based on the choice of

λ2 = min

2

3
,

L
√
Vd(x⋆, x0)

√
m(σ +M)

(
K−1
m

+ 2
) 3

2

,
(D.14) can be further upper bounded as

E
[
F (ϕ̄K)− F (x⋆)

]
≤

4(m− 1)
(
F (x0)− F (x⋆)

)
m
(
K−1
m

+ 2
)2 +

6LVd(x
⋆, x0)

m
(
K−1
m

+ 2
)2 +

8
√
Vd(x⋆, x0)(σ +M)

m
1
2

(
K−1
m

+ 2
) 1

2

.

D.7 Experimental Setup

All of our experiments were conducted using PyTorch [118] library.

D.7.1 Classification Setup

CIFAR-10 & CIFAR-100 Our implementation (e.g., ResNet and DenseNet im-
plementations, data pre-processing) generally follows the repository https://github.

https://github.com/kuangliu/pytorch-cifar

D.7. EXPERIMENTAL SETUP 153

com/kuangliu/pytorch-cifar. All the CIFAR experiments used a single GPU in
a mix of RTX2080Ti, TITAN Xp and TITAN V. The batch size is fixed to 128. We
used cross-entropy loss with 0.0005 weight decay and used batch normalization [61].
Data augmentation includes random 32-pixel crops with a padding of 4-pixel and
random horizontal flips with 0.5 probability. We used step (or multi-step) learning
rate scheduler with a decay factor 10. For the CIFAR-10 experiments, we trained 90
epochs and decayed the learning rate every 30 epochs. For the CIFAR-100 experi-
ments, we trained 300 epochs and decayed the learning rate at 150 epoch and 225
epoch following the settings in DenseNet [60].

ImageNet In the ImageNet experiments, we tried both ResNet50 and ResNet152
[55]. The training strategy is the same as the PyTorch’s official repository https://

github.com/pytorch/examples/tree/master/imagenet, which uses a batch size of
256. The learning rate starts at 0.1 and decays by a factor of 10 every 30 epochs. Also,
we applied weight decay with 0.0001 decay rate to the model during the training. For
the data augmentation, we applied random 224-pixel crops and random horizontal
flips with 0.5 probability. Here, we ran all experiments across 8 NVIDIA P100 GPUs
for 90 epochs.

D.7.2 Language Model Setup

We followed the implementation in the repository https://github.com/salesforce/
awd-lstm-lm and trained word level Penn Treebank with LSTM without fine-tuning
or continuous cache pointer augmentation for 750 epochs. The experiments were con-
ducted on a single RTX2080Ti. We used the default hyper-parameter tuning except
for learning rate and momentum: The LSTM has 3 layers containing 1150 hidden
units each, embedding size is 400, gradient clipping has a maximum norm 0.25, batch
size is 80, using variable sequence length, dropout for the layers has probability 0.4,
dropout for the RNN layers has probability 0.3, dropout for the input embedding
layer has probability 0.65, dropout to remove words from embedding layer has prob-
ability 0.1, weight drop [100] has probability 0.5, the amount of ℓ2-regularization
on the RNN activation is 2.0, the amount of slowness regularization applied on the
RNN activation is 1.0 and all weights receive a weight decay of 0.0000012.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm

Appendix E

Appendix for Chapter 6

E.1 Proof of Theorem 15

Let αi ≜ βt−i(1 − β) and denote x′t+1 ≜ xt+1 + ζbt+1 and Gt ≜ σ(g1, . . . , gt), ∀t.
Clearly, the random variables mt, xt, xt+1, ηt are Gt-measurable. Note that

mt = βKmt−K +
t∑

i=t−K+1

αigi.

Conceptually, if we choose K to be sufficiently large, the term βKmt−K is negli-
gible. Then, if all the points yt−K+1, . . . , yt are inside xt−K + δB, we have that mt

approximately belongs to ∂δf(xt−K) in expectation.
Note that for all i = t−K + 1, . . . , t,

∥yi − xt−K∥ ≤ ∥yi − xi−1∥+ ∥xi−1 − xt−K∥
(a)

≤ ∥x′i − xi−1∥+ ∥xi−1 − xt−K∥

= ∥ζbi − ηi−1mi−1∥+

∥∥∥∥∥
i−2∑

j=t−K

ηjmj

∥∥∥∥∥
(b)

≤ ζ +
i−1∑

j=t−K

ηj ∥mj∥

(c)

≤ ω

p
+
i− t+K

p

≤ K + ω

p
,

154

E.1. PROOF OF THEOREM 15 155

where (a) holds since yi is sampled from the line segment [xi−1, x
′
i], (b) uses ∥bi∥ ≤ 1

and (c) follows from ζ ≤ ω
p
and ηt ∥mt∥ ≤ 1

p
, ∀t. We verify that the choices of K,ω

and p satisfy K+ω
p
≤ δ:

K + ω

p
=

1
1−β ln

16G
ϵ

64G2

δϵ2
ln 16G

ϵ

= δ.

Then, conditioned on Gt−K , since for all i = t−K + 1, . . . , t,

E
[
gi | Gt−K

]
= E

[
∇f(yi) | Gt−K

]
∈ ∂δf(xt−K),

we have (note that
∑t

i=t−K+1 αi = 1− βK)

1

1− βK
t∑

i=t−K+1

αiE
[
gi | Gt−K

]
∈ ∂δf(xt−K)

⇒ 1

1− βK
(
E
[
mt | Gt−K

]
− βKmt−K

)
∈ ∂δf(xt−K)

⇒ dist(0, ∂δf(xt−K)) ≤
1

1− βK
(∥∥E[mt | Gt−K

]∥∥+ βK ∥mt−K∥
)

≤ 1

1− βK
(
E
[
∥mt∥ | Gt−K

]
+ βK ∥mt−K∥

)
.

Take expectation.

E
[
dist(0, ∂δf(xt−K))

]
≤ 1

1− βK
E
[
∥mt∥

]
+

βKG

1− βK
,

1

T

T∑
t=1

E
[
dist(0, ∂δf(xt−K))

]
≤ 1

(1− βK)T

T∑
t=1

E
[
∥mt∥

]
+

βKG

1− βK
.

We verify that the choices of β and K satisfy βKG ≤ ϵ
16
:
(
βK ≤ ϵ

16G

)
⇔
(
K ≥

1
ln 1

β

ln 16G
ϵ

)
. Without loss of generality, we assume that ϵ ≤ G, and thus βK ≤ 1

16
.

The above inequality can be further bounded as

1

T

T∑
t=1

E
[
dist(0, ∂δf(xt−K))

]
≤ 16

15T

T∑
t=1

E
[
∥mt∥

]
+

ϵ

15
. (E.1)

The remaining proof is to show Algorithm 14 ensures 1
T

∑T
t=1 E

[
∥mt∥

]
= O(ϵ).

156 APPENDIX E. APPENDIX FOR CHAPTER 6

For clarity, we let Yt+1 ≜ σ(g1, . . . , gt, bt+1, yt+1) and Ŷt+1 ≜ σ(g1, . . . , gt, bt+1).
Clearly, we have Gt ⊂ Ŷt+1 ⊂ Yt+1 ⊂ Gt+1. Let φ(λ) ≜ (1 − λ)xt + λx′t+1 for
λ ∈ [0, 1]. Since yt+1 is uniformly sampled from the line segment [xt, x

′
t+1] and that

f is differentiable at yt+1 almost surely, it holds that

E
[〈
gt+1, x

′
t+1 − xt

〉
| Gt
]
= E

[
E
[
E
[〈
gt+1, x

′
t+1 − xt

〉
| Yt+1

]
| Ŷt+1

]
| Gt
]

= E
[
E
[〈
∇f(yt+1), x

′
t+1 − xt

〉
| Ŷt+1

]
| Gt
]

= E
[∫ 1

0

f ′(φ(λ);x′t+1 − xt)dλ | Gt
]

= E
[
f(x′t+1)− f(xt) | Gt

]
.

(E.2)

By x′t+1 − xt = −ηtmt + ζbt+1, we have

E
[〈
gt+1, x

′
t+1 − xt

〉
| Gt
]
= −ηtE

[
⟨gt+1,mt⟩ | Gt

]
+ ζE

[
⟨gt+1, bt+1⟩ | Gt

]
≤ −ηtE

[
⟨gt+1,mt⟩ | Gt

]
+ ζG,

where we used ∥bt+1∥ ≤ 1. Thus, combining with (E.2), we obtain

E
[
⟨gt+1,mt⟩ | Gt

]
≤ 1

ηt
E
[
f(xt)− f(xt+1) + f(xt+1)− f(x′t+1) | Gt

]
+
ζ

ηt
G

≤ 1

ηt

(
f(xt)− f(xt+1)

)
+
ζ

ηt
(L0 +G).

(E.3)

Based on the construction mt+1 = βmt + (1− β)gt+1, we can conclude that

∥mt+1∥2 = β2 ∥mt∥2 + 2β(1− β) ⟨gt+1,mt⟩+ (1− β)2 ∥gt+1∥2 ,
E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
= 2β(1− β)E

[
ηt ⟨gt+1,mt⟩

]
+ (1− β)2E

[
ηt ∥gt+1∥2

]
.

From (E.3), it holds that

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
≤ 2β(1− β)E

[
f(xt)− f(xt+1)

]
+2β(1− β)(L0 +G)ζ + (1− β)2E

[
ηt ∥gt+1∥2

]
,

1

T

T∑
t=1

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
≤ 2β(1− β)∆

T
+ 2β(1− β)(L0 +G)ζ

+
(1− β)2G2

q
,

where we used ηt ≤ 1
q
.

E.1. PROOF OF THEOREM 15 157

Since ηt =
1

p∥mt∥+q , using the same telescoping proof in [155], as long as pG
q
≤ β

2
,

the following holds

1

T

T∑
t=1

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
≥ β(1− β)

2T

T+1∑
t=1

E

[
∥mt∥2

p ∥mt∥+ q

]
− βG2

qT
.

Thus,

β(1−β)
2T

T+1∑
t=1

E

[
∥mt∥2

p ∥mt∥+q

]
≤ 2β(1−β)∆

T
+2β(1−β)(L0+G)ζ+

(1−β)2G2

q
+
βG2

qT
,

1

T

T∑
t=1

E

[
q ∥mt∥2

p ∥mt∥+ q

]
≤ 4q∆

T
+ 4q(L0 +G)ζ +

2(1− β)G2

β
+

2G2

T (1− β)
.

Comparing the above inequality with (14)1 in [155], we notice that the only
difference is the additional perturbation term 4q(L0 + G)ζ. Since we choose the
identical β, p, q and T as in [155], using the arguments (15) and (16) in [155] and
denoting mavg ≜ 1

T

∑T
t=1 E

[
∥mt∥

]
, we obtain

4Gm2
avg

mavg + 4G
≤ ϵ2

17
+ 4q(L0 +G)ζ

(⋆)

≤ ϵ2

15
,

where (⋆) uses ζ ≤ ϵ2

510q(L0+G)
. The above is a quadratic equation in mavg:

4Gm2
avg −

ϵ2

15
mavg −

4Gϵ2

15
≤ 0.

Solving for the positive root of this quadratic equation and using ϵ ≤ G, we obtain

mavg ≤
ϵ2

15
+
√

ϵ4

225
+ 64G2ϵ2

15

8G
≤ 4ϵ

15
≤ 5ϵ

16
.

Finally, using (E.1), we conclude that

E
[
dist(0, ∂δf(xout))

]
=

1

T

T∑
t=1

E
[
dist(0, ∂δf(xt−K))

]
≤ 2ϵ

5
.

Thus, with probability at least 3
5
, we have dist(0, ∂δf(xout)) ≤ ϵ.

1There is a typo in the telescoping proof of Theorem 14 in [155]: The term β2G2

q above Equa-

tion (14) should be βG2

q . This typo does not affect the final convergence result.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine
learning. In Operating Systems Design and Implementation (OSDI), pages 265–
283, 2016.

[2] Z. Allen-Zhu. How to make the gradients small stochastically: Even faster
convex and nonconvex sgd. In Advances in Neural Information Processing
Systems (NIPS/NeurIPS), pages 1157–1167, 2018.

[3] Z. Allen-Zhu. Katyusha X: Simple Momentum Method for Stochastic Sum-of-
Nonconvex Optimization. In International Conference on Machine Learning
(ICML), pages 179–185, 2018.

[4] Z. Allen-Zhu. Katyusha: The First Direct Acceleration of Stochastic Gradient
Methods. J. Mach. Learn. Res., 18(221):1–51, 2018.

[5] Z. Allen-Zhu and L. Orecchia. Linear Coupling: An Ultimate Unification of
Gradient and Mirror Descent. In Innovations in Theoretical Computer Science
(ITCS), 2017.

[6] Z. Allen-Zhu and Y. Yuan. Improved SVRG for Non-Strongly-Convex or Sum-
of-Non-Convex Objectives. In International Conference on Machine Learning
(ICML), pages 1080–1089, 2016.

[7] Z. Allen-Zhu, Y. Li, R. M. de Oliveira, and A. Wigderson. Much Faster Al-
gorithms for Matrix Scaling. In C. Umans, editor, Annual Symposium on
Foundations of Computer Science (FOCS), pages 890–901, 2017.

[8] H. Attouch and J. Peypouquet. The rate of convergence of nesterov’s acceler-
ated forward-backward method is actually faster than 1/kˆ2. SIAM J. Optim.,
26(3):1824–1834, 2016.

158

BIBLIOGRAPHY 159

[9] A. Auslender and M. Teboulle. Interior gradient and proximal methods for
convex and conic optimization. SIAM J. Optim., 16(3):697–725, 2006.

[10] N. Bansal and A. Gupta. Potential-Function Proofs for Gradient Methods.
Theory Comput., 15(4):1–32, 2019.

[11] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces. Springer, New York, 2017. Second edition.

[12] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[13] M. Belkin, S. Ma, and S. Mandal. To Understand Deep Learning We Need to
Understand Kernel Learning. In International Conference on Machine Learn-
ing (ICML), pages 541–549, 2018.

[14] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization.
Society for Industrial and Applied Mathematics, 2013.

[15] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale
Machine Learning. SIAM Review, 60(2):223–311, 2018.

[16] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

[17] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding
stationary points i. Math. Program., pages 1–50, 2019.

[18] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding
stationary points ii: first-order methods. Math. Program., 185(1-2), 2021.

[19] A. Cauchy. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[20] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol., 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[21] F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[22] M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix Scaling and Bal-
ancing via Box Constrained Newton’s Method and Interior Point Methods.
In Annual Symposium on Foundations of Computer Science (FOCS), pages
902–913. IEEE, 2017.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

160 BIBLIOGRAPHY

[23] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, 1995.

[24] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard. A robust accelerated optimiza-
tion algorithm for strongly convex functions. In American Control Conference
(ACC), pages 1376–1381. IEEE, 2018.

[25] A. d’Aspremont, D. Scieur, and A. Taylor. Acceleration methods. arXiv
preprint arXiv:2101.09545, 2021.

[26] D. Davis and D. Drusvyatskiy. Complexity of finding near-stationary points of
convex functions stochastically. arXiv preprint arXiv:1802.08556, 2018.

[27] A. Defazio. A simple practical accelerated method for finite sums. In Advances
in Neural Information Processing Systems (NIPS/NeurIPS), pages 676–684,
2016.

[28] A. Defazio. On the Curved Geometry of Accelerated Optimization. In Advances
in Neural Information Processing Systems (NIPS/NeurIPS), volume 32, pages
1764–1773, 2019.

[29] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A Fast Incremental Gradi-
ent Method With Support for Non-Strongly Convex Composite Objectives. In
Advances in Neural Information Processing Systems (NIPS/NeurIPS), pages
1646–1654, 2014.

[30] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Math. Program., 146(1):37–75, 2014.

[31] J. Diakonikolas and C. Guzmán. Complementary Composite Minimization,
Small Gradients in General Norms, and Applications to Regression Problems.
arXiv preprint arXiv:2101.11041, 2021.

[32] J. Diakonikolas and P. Wang. Potential Function-based Framework for Making
the Gradients Small in Convex and Min-Max Optimization. arXiv preprint
arXiv:2101.12101, 2021.

[33] D. Driggs, M. J. Ehrhardt, and C. Schönlieb. Accelerating variance-reduced
stochastic gradient methods. Math. Program., 191(2):671–715, 2022.

[34] Y. Drori. The exact information-based complexity of smooth convex minimiza-
tion. J. Complex., 39:1–16, 2017.

BIBLIOGRAPHY 161

[35] Y. Drori. On the properties of convex functions over open sets. arXiv preprint
arXiv:1812.02419, 2018.

[36] Y. Drori and A. Taylor. On the oracle complexity of smooth strongly convex
minimization. arXiv preprint arXiv:2101.09740, 2021.

[37] Y. Drori and M. Teboulle. Performance of first-order methods for smooth
convex minimization: a novel approach. Math. Program., 145(1-2):451–482,
2014.

[38] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

[39] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(Jul):2121–2159,
2011.

[40] J. C. Duchi, M. I. Jordan, and H. B. McMahan. Estimation, Optimization, and
Parallelism when Data is Sparse. In Advances in Neural Information Processing
Systems (NIPS/NeurIPS), pages 2832–2840, 2013.

[41] C. Fang, Y. Huang, and Z. Lin. Accelerating asynchronous algorithms
for convex optimization by momentum compensation. arXiv preprint
arXiv:1802.09747, 2018.

[42] C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-Optimal Non-Convex
Optimization via Stochastic Path-Integrated Differential Estimator. In Ad-
vances in Neural Information Processing Systems (NIPS/NeurIPS), pages 687–
697, 2018.

[43] D. J. Foster, A. Sekhari, O. Shamir, N. Srebro, K. Sridharan, and B. Wood-
worth. The Complexity of Making the Gradient Small in Stochastic Convex
Optimization. In Annual Conference on Learning Theory (COLT), pages 1319–
1345, 2019.

[44] R. Frostig, R. Ge, S. Kakade, and A. Sidford. Un-regularizing: approximate
proximal point and faster stochastic algorithms for empirical risk minimization.
In International Conference on Machine Learning (ICML), pages 2540–2548,
2015.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

162 BIBLIOGRAPHY

[45] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping From Saddle Points —
Online Stochastic Gradient for Tensor Decomposition. In Annual Conference
on Learning Theory (COLT), pages 797–842, 2015.

[46] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for
strongly convex stochastic composite optimization i: A generic algorithmic
framework. SIAM J. Optim., 22(4):1469–1492, 2012.

[47] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for noncon-
vex stochastic programming. SIAM J. Optim., 23(4):2341–2368, 2013.

[48] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear
and stochastic programming. Math. Program., 156(1-2):59–99, 2016.

[49] A. Goldstein. Optimization of Lipschitz continuous functions. Math. Program.,
13(1):14–22, 1977.

[50] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[51] B. Gu, W. Xian, Z. Huo, C. Deng, and H. Huang. A Unified q-Memorization
Framework for Asynchronous Stochastic Optimization. J. Mach. Learn. Res.,
21:190–1, 2020.

[52] R. Hannah, Y. Liu, D. O’Connor, and W. Yin. Breaking the span assump-
tion yields fast finite-sum minimization. In Advances in Neural Information
Processing Systems (NIPS/NeurIPS), pages 2312–2321, 2018.

[53] R. Hannah, F. Feng, and W. Yin. A2BCD: Asynchronous Acceleration with
Optimal Complexity. In International Conference on Learning Representations
(ICLR), 2019.

[54] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision (ECCV), pages 630–
645. Springer, 2016.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In Computer Vision and Pattern Recognition Conference (CVPR), pages
770–778, 2016.

[56] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

BIBLIOGRAPHY 163

[57] B. Hu and L. Lessard. Dissipativity Theory for Nesterov’s Accelerated Method.
In International Conference on Machine Learning (ICML), pages 1549–1557,
2017.

[58] B. Hu, S. Wright, and L. Lessard. Dissipativity Theory for Accelerating
Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha
Using Semidefinite Programs. In International Conference on Machine Learn-
ing (ICML), pages 2038–2047, 2018.

[59] C. Hu, W. Pan, and J. T. Kwok. Accelerated gradient methods for stochastic
optimization and online learning. In Advances in Neural Information Process-
ing Systems (NIPS/NeurIPS), pages 781–789, 2009.

[60] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely con-
nected convolutional networks. In Computer Vision and Pattern Recognition
Conference (CVPR), pages 4700–4708, 2017.

[61] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[62] M. Ito and M. Fukuda. Nearly optimal first-order methods for convex opti-
mization under gradient norm measure: An adaptive regularization approach.
J. Optim. Theory Appl., 188(3):770–804, 2021.

[63] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to Escape
Saddle Points Efficiently. In International Conference on Machine Learning
(ICML), pages 1724–1732, 2017.

[64] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using pre-
dictive variance reduction. In Advances in Neural Information Processing Sys-
tems (NIPS/NeurIPS), pages 315–323, 2013.

[65] P. Joulani, A. György, and C. Szepesvári. Think out of the ”Box”: Generically-
Constrained Asynchronous Composite Optimization and Hedging. In Advances
in Neural Information Processing Systems (NIPS/NeurIPS), pages 12225–
12235, 2019.

[66] Y. Juan, Y. Zhuang, W. Chin, and C. Lin. Field-aware Factorization Machines
for CTR Prediction. In ACM Conference on Recommender Systems (RecSys),
pages 43–50. ACM, 2016.

164 BIBLIOGRAPHY

[67] S. S. Keerthi, D. DeCoste, and T. Joachims. A Modified Finite Newton Method
for Fast Solution of Large Scale Linear SVMs. J. Mach. Learn. Res., 6:341–361,
2005.

[68] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex
minimization. Math. Program., 159(1-2):81–107, 2016.

[69] D. Kim and J. A. Fessler. Generalizing the optimized gradient method for
smooth convex minimization. SIAM J. Optim., 28(2):1920–1950, 2018.

[70] D. Kim and J. A. Fessler. Another look at the fast iterative shrink-
age/thresholding algorithm (FISTA). SIAM J. Optim., 28(1):223–250, 2018.

[71] D. Kim and J. A. Fessler. Optimizing the Efficiency of First-Order Methods
for Decreasing the Gradient of Smooth Convex Functions. J. Optim. Theory
Appl., 188(1):192–219, 2021.

[72] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

[73] J. Konečnỳ and P. Richtárik. Semi-stochastic gradient descent methods. arXiv
preprint arXiv:1312.1666, 2013.

[74] G. Kornowski and O. Shamir. Oracle Complexity in Nonsmooth Noncon-
vex Optimization. In Advances in Neural Information Processing Systems
(NIPS/NeurIPS), pages 324–334, 2021.

[75] D. Kovalev, S. Horváth, and P. Richtárik. Don’t jump through hoops and
remove those loops: SVRG and Katyusha are better without the outer loop.
In Algorithmic Learning Theory (ALT), pages 451–467. PMLR, 2020.

[76] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[77] A. Kulunchakov and J. Mairal. Estimate Sequences for Variance-Reduced
Stochastic Composite Optimization. In International Conference on Machine
Learning (ICML), pages 3541–3550, 2019.

[78] G. Lan. An optimal method for stochastic composite optimization. Math.
Program., 133(1-2):365–397, 2012.

[79] G. Lan and Y. Zhou. An optimal randomized incremental gradient method.
Math. Program., 171(1-2):167–215, 2018.

BIBLIOGRAPHY 165

[80] G. Lan, A. Nemirovski, and A. Shapiro. Validation analysis of mirror descent
stochastic approximation method. Math. Program., 134(2):425–458, 2012.

[81] G. Lan, Z. Li, and Y. Zhou. A unified variance-reduced accelerated gradient
method for convex optimization. In Advances in Neural Information Processing
Systems (NIPS/NeurIPS), pages 10462–10472, 2019.

[82] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. ASAGA: Asynchronous Par-
allel SAGA. In International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 54, pages 46–54, 2017.

[83] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Improved Asynchronous
Parallel Optimization Analysis for Stochastic Incremental Methods. J. Mach.
Learn. Res., 19:81:1–81:68, 2018.

[84] J. Lee, C. Park, and E. K. Ryu. A Geometric Structure of Acceleration and
Its Role in Making Gradients Small Fast. In Advances in Neural Information
Processing Systems (NIPS/NeurIPS), pages 11999–12012, 2021.

[85] L. Lessard and P. J. Seiler. Direct Synthesis of Iterative Algorithms With
Bounds on Achievable Worst-Case Convergence Rate. In American Control
Conference (ACC), pages 119–125, 2020.

[86] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization
algorithms via integral quadratic constraints. SIAM J. Optim., 26(1):57–95,
2016.

[87] D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li. RCV1: A New Benchmark
Collection for Text Categorization Research. J. Mach. Learn. Res., 5:361–397,
2004.

[88] B. Li, M. Ma, and G. B. Giannakis. On the Convergence of SARAH and
Beyond. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 223–233, 2020.

[89] Z. Li. ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient
Method. arXiv preprint arXiv:2103.11333, 2021.

[90] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous Parallel Stochastic Gradi-
ent for Nonconvex Optimization. In Advances in Neural Information Processing
Systems (NIPS/NeurIPS), pages 2737–2745, 2015.

166 BIBLIOGRAPHY

[91] H. Lin, J. Mairal, and Z. Harchaoui. A Universal Catalyst for First-
Order Optimization. In Advances in Neural Information Processing Systems
(NIPS/NeurIPS), pages 3366–3374, 2015.

[92] Q. Lin and L. Xiao. An Adaptive Accelerated Proximal Gradient Method
and its Homotopy Continuation for Sparse Optimization. In International
Conference on Machine Learning (ICML), pages 73–81, 2014.

[93] Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gra-
dient method. In Advances in Neural Information Processing Systems
(NIPS/NeurIPS), pages 3059–3067, 2014.

[94] I. Loshchilov and F. Hutter. SGDR: Stochastic Gradient Descent with Warm
Restarts. In International Conference on Learning Representations (ICLR),
2017.

[95] J. Lucas, S. Sun, R. Zemel, and R. Grosse. Aggregated Momentum: Sta-
bility Through Passive Damping. In International Conference on Learning
Representations (ICLR), 2019. URL https://openreview.net/forum?id=

Syxt5oC5YQ.

[96] J. Ma and D. Yarats. Quasi-hyperbolic momentum and Adam for deep learning.
In International Conference on Learning Representations (ICLR), 2019. URL
https://openreview.net/forum?id=S1fUpoR5FQ.

[97] S. Ma, R. Bassily, and M. Belkin. The Power of Interpolation: Understanding
the Effectiveness of SGD in Modern Over-parametrized Learning. In Interna-
tional Conference on Machine Learning (ICML), pages 3325–3334, 2018.

[98] H. Mania, X. Pan, D. S. Papailiopoulos, B. Recht, K. Ramchandran, and M. I.
Jordan. Perturbed Iterate Analysis for Asynchronous Stochastic Optimization.
SIAM J. Optim., 27(4):2202–2229, 2017.

[99] M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. 1993.

[100] S. Merity, N. S. Keskar, and R. Socher. Regularizing and Optimizing LSTM
Language Models. In International Conference on Learning Representations
(ICLR), 2018.

https://openreview.net/forum?id=Syxt5oC5YQ
https://openreview.net/forum?id=Syxt5oC5YQ
https://openreview.net/forum?id=S1fUpoR5FQ

BIBLIOGRAPHY 167

[101] A. Nazin, A. Nemirovsky, A. Tsybakov, and A. Juditsky. Algorithms of robust
stochastic optimization based on mirror descent method. Autom. Remote.
Control., 80(9):1607–1627, 2019.

[102] A. Nemirovski and D. Yudin. Problem complexity and method efficiency in
optimization. John Wiley, New York, 1983.

[103] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic ap-
proximation approach to stochastic programming. SIAM J. Optim., 19(4):
1574–1609, 2009.

[104] Y. Nesterov. A method for solving the convex programming problem with
convergence rate O(1/k2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–
547, 1983.

[105] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, 2005.

[106] Y. Nesterov. How to make the gradients small. Optima. Mathematical Opti-
mization Society Newsletter, (88):10–11, 2012.

[107] Y. Nesterov. Introductory lectures on convex optimization: A basic course,
volume 87. Springer Science & Business Media, 2013.

[108] Y. Nesterov. Gradient methods for minimizing composite functions. Math.
Program., 140(1):125–161, 2013.

[109] Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[110] Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky. Primal–dual
accelerated gradient methods with small-dimensional relaxation oracle. Optim.
Methods Softw., pages 1–38, 2020.

[111] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A Novel Method
for Machine Learning Problems Using Stochastic Recursive Gradient. In In-
ternational Conference on Machine Learning (ICML), pages 2613–2621, 2017.

[112] L. M. Nguyen, P. H. Nguyen, M. van Dijk, P. Richtárik, K. Scheinberg, and
M. Takác. SGD and Hogwild! Convergence Without the Bounded Gradients
Assumption. In International Conference on Machine Learning (ICML), vol-
ume 80, pages 3747–3755, 2018.

168 BIBLIOGRAPHY

[113] A. Nitanda. Stochastic Proximal Gradient Descent with Acceleration
Techniques. In Advances in Neural Information Processing Systems
(NIPS/NeurIPS), pages 1574–1582, 2014.

[114] J. Nocedal, A. Sartenaer, and C. Zhu. On the Behavior of the Gradient Norm
in the Steepest Descent Method. Comput. Optim. Appl., 22(1):5–35, 2002.

[115] B. O’donoghue and E. Candes. Adaptive restart for accelerated gradient
schemes. Found. Comput. Math., 15(3):715–732, 2015.

[116] C. Paquette and S. Vavasis. Potential-based analyses of first-order methods
for constrained and composite optimization. arXiv preprint arXiv:1903.08497,
2019.

[117] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127–239, 2014.

[118] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch.
2017.

[119] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res., 12:2825–2830, 2011.

[120] F. Pedregosa, R. Leblond, and S. Lacoste-Julien. Breaking the Nonsmooth Bar-
rier: A Scalable Parallel Method for Composite Optimization. In Advances in
Neural Information Processing Systems (NIPS/NeurIPS), pages 56–65, 2017.

[121] N. H. Pham, L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh. ProxSARAH: An
efficient algorithmic framework for stochastic composite nonconvex optimiza-
tion. J. Mach. Learn. Res., 21(110):1–48, 2020.

[122] J. Platt. Sequential minimal optimization: A fast algorithm for training sup-
port vector machines. 1998.

[123] B. T. Polyak. Some methods of speeding up the convergence of iteration meth-
ods. USSR Comput. Math. & Math. Phys., 4(5):1–17, 1964.

[124] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM J. Control Optim., 30(4):838–855, 1992.

BIBLIOGRAPHY 169

[125] B. Recht, C. Ré, S. J. Wright, and F. Niu. Hogwild!: A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent. In Advances in Neural Information
Processing Systems (NIPS/NeurIPS), pages 693–701, 2011.

[126] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math.
Stat., pages 400–407, 1951.

[127] R. T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM J. Control. Optim., 14(5):877–898, 1976.

[128] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer
Science & Business Media, 2009.

[129] U. G. Rothblum and H. Schneider. Scalings of matrices which have prespecified
row sums and column sums via optimization. Linear Algebra Appl., 114:737–
764, 1989.

[130] N. L. Roux, M. Schmidt, and F. R. Bach. A Stochastic Gradient Method
with an Exponential Convergence Rate for Finite Training Sets. In Advances
in Neural Information Processing Systems (NIPS/NeurIPS), pages 2663–2671,
2012.

[131] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recog-
nition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

[132] C. D. Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the Wild: A Unified
Analysis of Hogwild-Style Algorithms. In Advances in Neural Information
Processing Systems (NIPS/NeurIPS), pages 2674–2682, 2015.

[133] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochas-
tic average gradient. Math. Program., 162(1-2):83–112, 2017.

[134] B. V. Scoy, R. A. Freeman, and K. M. Lynch. The Fastest Known Globally
Convergent First-Order Method for Minimizing Strongly Convex Functions.
IEEE Contr. Syst. Lett., 2(1):49–54, 2017.

[135] S. Shalev-Shwartz and Y. Singer. Logarithmic regret algorithms for strongly
convex repeated games. 2007. Technical report, The Hebrew University.

[136] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods
for regularized loss minimization. J. Mach. Learn. Res., 14(Feb):567–599, 2013.

170 BIBLIOGRAPHY

[137] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordi-
nate ascent for regularized loss minimization. In International Conference on
Machine Learning (ICML), pages 64–72, 2014.

[138] C. Song, Y. Jiang, and Y. Ma. Variance Reduction via Accelerated Dual
Averaging for Finite-Sum Optimization. In Advances in Neural Information
Processing Systems (NIPS/NeurIPS), volume 33, pages 833–844, 2020.

[139] S. U. Stich, A. Mohtashami, and M. Jaggi. Critical Parameters for Scalable Dis-
tributed Learning with Large Batches and Asynchronous Updates. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), volume
130, pages 4042–4050, 2021.

[140] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on
Machine Learning (ICML), pages 1139–1147, 2013.

[141] A. Taylor and F. Bach. Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions. In Annual Conference on
Learning Theory (COLT), pages 2934–2992, 2019.

[142] A. Taylor and Y. Drori. An optimal gradient method for smooth strongly
convex minimization. Math. Program., pages 1–38, 2022.

[143] A. Taylor, B. Van Scoy, and L. Lessard. Lyapunov Functions for First-Order
Methods: Tight Automated Convergence Guarantees. In International Con-
ference on Machine Learning (ICML), pages 4897–4906, 2018.

[144] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case performance
of first-order methods for composite convex optimization. SIAM J. Optim., 27
(3):1283–1313, 2017.

[145] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex in-
terpolation and exact worst-case performance of first-order methods. Math.
Program., 161(1-2):307–345, 2017.

[146] L. Tian, K. Zhou, and A. M.-C. So. On the Finite-Time Complexity and Practi-
cal Computation of Approximate Stationarity Concepts of Lipschitz Functions.
In International Conference on Machine Learning (ICML), pages 21360–21379,
2022.

BIBLIOGRAPHY 171

[147] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[148] P. Tseng. On accelerated proximal gradient methods for convex-concave
optimization. https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf,
2008. Accessed May 1, 2020.

[149] A. C. Wilson, B. Recht, and M. I. Jordan. A lyapunov analysis of momentum
methods in optimization. arXiv preprint arXiv:1611.02635, 2016.

[150] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems (NIPS/NeurIPS), pages 4148–4158, 2017.

[151] B. E. Woodworth and N. Srebro. Tight Complexity Bounds for Optimizing
Composite Objectives. In Advances in Neural Information Processing Systems
(NIPS/NeurIPS), pages 3639–3647, 2016.

[152] L. Xiao and T. Zhang. A Proximal Stochastic Gradient Method with Progres-
sive Variance Reduction. SIAM J. Optim., 24(4):2057–2075, 2014.

[153] L. Xiao, A. W. Yu, Q. Lin, and W. Chen. DSCOVR: Randomized Primal-Dual
Block Coordinate Algorithms for Asynchronous Distributed Optimization. J.
Mach. Learn. Res., 20(1):1634–1691, 2019.

[154] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-
H. Chung, C.-H. Ho, C.-F. Chang, Y.-H. Wei, et al. Feature engineering and
classifier ensemble for KDD cup 2010. In KDD cup, 2010.

[155] J. Zhang, H. Lin, S. Jegelka, S. Sra, and A. Jadbabaie. Complexity of Find-
ing Stationary Points of Nonconvex Nonsmooth Functions. In International
Conference on Machine Learning (ICML), pages 11173–11182, 2020.

[156] Y. Zhang and L. Xiao. Stochastic Primal-Dual Coordinate Method for Regu-
larized Empirical Risk Minimization. In International Conference on Machine
Learning (ICML), pages 353–361, 2015.

[157] D. Zhou, P. Xu, and Q. Gu. Stochastic Nested Variance Reduction for Non-
convex Optimization. J. Mach. Learn. Res., 21:103:1–103:63, 2020.

[158] K. Zhou, F. Shang, and J. Cheng. A Simple Stochastic Variance Reduced Algo-
rithm with Fast Convergence Rates. In International Conference on Machine
Learning (ICML), pages 5980–5989, 2018.

https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

172 BIBLIOGRAPHY

[159] K. Zhou, Q. Ding, F. Shang, J. Cheng, D. Li, and Z.-Q. Luo. Direct Accelera-
tion of SAGA using Sampled Negative Momentum. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 1602–1610, 2019.

[160] K. Zhou, Y. Jin, Q. Ding, and J. Cheng. Amortized Nesterov’s Momentum: A
Robust Momentum and Its Application to Deep Learning. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 211–220, 2020.

[161] K. Zhou, A. M.-C. So, and J. Cheng. Boosting First-Order Methods by Shifting
Objective: New Schemes with Faster Worst-Case Rates. In Advances in Neural
Information Processing Systems (NIPS/NeurIPS), pages 15405–15416, 2020.

[162] K. Zhou, A. M.-C. So, and J. Cheng. Accelerating Perturbed Stochastic It-
erates in Asynchronous Lock-Free Optimization. In NeurIPS Workshop on
Optimization for Machine Learning (NeurIPS OPT), 2022.

[163] K. Zhou, L. Tian, A. M.-C. So, and J. Cheng. Practical Schemes for Finding
Near-Stationary Points of Convex Finite-Sums. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 3684–3708, 2022.

	Introduction
	Machine Learning Problems
	Literature on Finite-Sum Optimization
	Worst-Case Analysis
	Computer-Aided Worst-Case Analysis
	Thesis Organization
	Publications Related to This Thesis

	Even Faster First-Order Methods for Strongly Convex Problems
	The Shifting Methodology
	Tackling the Shifted Objective
	Deterministic Objectives
	Finite-Sum Objectives with Incremental First-Order Oracle
	Finite-Sum Objectives with Incremental Proximal Point Oracle
	Performance Evaluations
	Chapter Summary and Discussion

	Practical First-Order Methods for Finding Near-Stationary Points
	Motivations
	OGM-G: ``Momentum'' Reformulation and a Memory-Saving Variant
	Accelerated SVRG: Fast Rates for Both Gradient Norm and Objective
	Near-Optimal Accelerated SVRG with Adaptive Regularization
	Chapter Summary and Discussion

	Optimal Asynchronous Lock-Free Stochastic First-Order Method
	Serial Sparse Accelerated SVRG
	Asynchronous Sparse Accelerated SVRG
	Experiments
	Chapter Summary

	Neural Network Optimization: A Robust Nesterov's Momentum
	Notations and General Norm Setup
	Amortized Nesterov's Momentum
	Convergence Results
	Amortized Momentum for Deep Learning
	Experiments
	Chapter Summary

	Neural Network Theory: Finding Approximately Stationary Points
	Prior Arts
	Perturbed Stochastic INGD
	Finite-Time & Dimension-Independent Guarantee

	Conclusion
	Appendix for Chapter 2
	Technical Lemmas with Proofs
	Proofs of Section 2.3
	Proofs of Section 2.4
	Proof of Section 2.5 (Theorem 3)
	Experimental Setup
	Analyzing NAG using Lyapunov Function

	Appendix for Chapter 3
	Numerical Results of Acc-SVRG-G
	Proofs of Section 3.2
	Proofs of Section 3.3
	Proofs of Section 3.4
	Katyusha + L2S

	Appendix for Chapter 4
	Proof of Lemma 3
	Proof of Theorem 11
	Proof of Theorem 12
	The Effect of the Constant
	Justifying the Dependence
	Sanity Check for Our Implementation
	Experimental Setup

	Appendix for Chapter 5
	Extra Experimental Results
	Technical Lemma
	Proof of Lemma 4
	Proof of Theorem 13a
	Proof of Theorem 13b
	Proof of Theorem 14
	Experimental Setup

	Appendix for Chapter 6
	Proof of Theorem 15

