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Abstract of thesis entitled:
Accelerating Finite-sum Convex Optimization and Highly-smooth Convex Optimiza-
tion
Submitted by ZHOU, Kaiwen
for the degree of Master of Philosophy in Computer Science and Engineering
at The Chinese University of Hong Kong in July 2019

Acceleration in convex optimization is, for a long time, a vivid research topic
in both machine learning and optimization communities. The basic motivation of
acceleration is to derive algorithms with faster worst-case convergence rates given
certain oracles (e.g., gradient oracle, hessian oracle).

In recent years, due to the increasing dimensionality of optimization problems
in the machine learning community, gradient descent (and its variants) become a
popular choice of optimizer. The reason is that these methods are known to be
dimension-free (i.e., oracle complexity independent of dimensionality). Although the
optimal accelerated gradient descent has been discovered decades ago, researchers
are investigating certain problem types that have potentials for designing even faster
algorithms. One problem type that attracts a lot of attention recently is the finite-
sum convex problem, which is commonly seen in many machine learning tasks (e.g.,
empirical risk minimization). Based on this problem structure, very efficient stochas-
tic variants of gradient descent have been proposed in recent years. In this thesis, we
try to derive simple and practical accelerated variants for these stochastic methods.
While achieving the optimal convergence rates in this problem type, our proposed
methods are as implementable as these popular stochastic methods.

On the other hand, in the optimization community, accelerations for highly-
smooth (i.e., with Lipschitz continuous high-order derivative) convex problems are
gathering attention recently. Although many accelerated methods under this setting
were proposed, there is still a lack of interpretation for these methods. In the work of
Allen-Zhu and Hazan, Nesterov’s accelerated method is interpreted as coupling gradi-
ent descent and mirror descent, which is called Linear Coupling. Their work provides
an intuitive understanding of the source of first-order acceleration. However, Linear
Coupling only works in the first-order setting. In this thesis, we consider extending
Linear Coupling into a broader scope. We show that many accelerated high-order
methods can also be formulated as coupling two sequences of steps and be cast into
a unified analysis framework, which we call High-order Linear Coupling. Based on
this framework, we provide similar intuition towards high-order acceleration and also
identify potential improvements and open problems.
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摘要：

凸優化中的加速一直是機器學習和優化中的熱門研究課題。加速的基本目的是
在給定某些信息的情況下（例如，梯度信息，海森矩陣信息），推導出具有更快
的最壞情況收斂速度的算法。
近年來，由於機器學習中優化問題的維數的劇烈增加，梯度下降（及其變體）

已經成為了優化器的首選。其原因是這些方法的迭代複雜度與維數無關。儘管最
優的加速梯度下降算法早在幾十年前已被提出，研究人員仍在探索一些具有設計
更快算法的潛力的問題類型。有限和凸優化問題是最近非常熱門的一類問題。這
類問題結構在機器學習的任務中（例如，經驗風險最小化）很常見。基於該問題
結構，近年來有許多非常高效的梯度下降的隨機變體被提出。在本論文中，我們
嘗試加速這些熱門的隨機梯度下降方法。我們提出的方法在實現了最優收斂速度
的同時，維持了與這些熱門隨機方法同樣的可實施性。
另一方面，在優化領域中，高度平滑的凸優化問題（即擁有Lipschitz連續的高

階導數）的加速算法受到了研究者們的關注。雖然有許多這種場景下的加速方法
已被提出，我們仍然缺乏一個對這些方法的直觀解釋。在Allen-Zhu和Hazan的工
作中，Nesterov的加速方法被解釋為梯度下降和鏡像下降的一種耦合。他們稱之為
線性耦合。他們的工作提供了對一階加速的一種直觀理解。然而，線性耦合僅僅
適用於一階場景中。在本論文中，我們考慮將線性耦合推廣到高階場景中。我們
證明了許多加速的高階方法也可以表示為兩個迭代序列的耦合。因此，我們提出
了一個統一的分析框架，叫做高階線性耦合。基於這個框架，我們提供了類似的
對高階加速算法的直觀理解，並指出了一些高階優化中的潛在改進和開放問題。
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Chapter 1

Introduction

In the last half-century, a great amount of literature has been devoted to convex
optimization. If no specific problem structure is assumed other than convexity, very
strong results are known for first-order methods on both the upper-bound (i.e., ac-
celerated algorithms) and the lower-bound side (e.g, [29, 31]). Due to these results,
a widely held attitude is that convex problems are well-solved.

However, if we can utilize certain problem structures, the lower bounds no longer
hold. Thus, it is still a popular direction in convex optimization to design faster
algorithms by exploiting the problem structure. We would always expect the as-
sumptions on the problem structure to be general, and thus applicable for a wide
range of practical problems. One typical assumption is the finite-sum structure,
which has attracted a lot of attention in recent years:

F (x) =
1

n

n∑
i=1

fi(x).

This structure is prevalent in machine learning and statistics such as the regular-
ized empirical risk minimization (ERM) (e.g., `2-logistic regression, ridge regression,
LASSO, `2-SVM). By carefully exploiting this structure, striking results were shown
based on the technique called variance reduction (the first work is [41]). The sig-
nificance is that the stochastic variance reduced methods achieve the convergence
rates of deterministic methods (i.e., gradient descent (GD)) while enjoying the lower
per-iteration complexity as that of stochastic gradient descent (SGD). This huge
improvement motivates researchers to establish upper bounds and lower bounds for
convex problems with finite-sum structure.

Another potential in convex optimization is to study higher-order methods. While
the algorithms derived in this case may not be as implementable as first-order meth-

1



2 CHAPTER 1. INTRODUCTION

ods due to high memory complexities and restricted problem types, they are im-
portant in the development of optimization theory. Perhaps surprisingly, unlike the
first-order case, the optimal second-order (or higher-order) method is still unknown.
We have near optimal algorithms (i.e., optimal up to log factors) but they are not
perfect from many perspectives (e.g., high per-iteration complexity and extremely
complicated algorithm structure). Also, higher-order methods seem to be more re-
stricted than first-order methods (e.g., restrictions on the problem domain). Thus,
there are still many interesting open problems in this line of research.

This thesis discusses both directions mentioned above. Specifically, in the direc-
tion of exploiting finite-sum structure, we propose two accelerated methods based on
two popular stochastic variance reduced methods, respectively. In another direction
on highly-smooth convex optimization, we provide a general framework for many
accelerated methods in this case and discuss some potential improvements.

Thesis organization.

The rest of the thesis is organized as follows. Chapter 2 discusses finite-sum convex
optimization, in which we first review some basics and the classic algorithms and
then introduce accelerated methods based on them. Chapter 3 focuses on highly-
smooth convex optimization, where we first propose a general acceleration framework
and then by casting many accelerated algorithms as instances, we provide a unified
analysis and an intuitive interpretation to them. Chapter 4 concludes this thesis.

1.1 Publications related to this thesis

Some content in this thesis has been published in conference proceedings. Chap-
ter 2 is based on my publications [50, 51] during the Master of Philosophy period.
Precisely, the MiG method is published in [51] and the SSNM method is in [50].
Chapter 3 is based on my unpublished scripts written during the Master of Philos-
ophy period and the key contribution is a structured interpretation to high-order
accelerations.



Chapter 2

Finite-sum Convex Optimization

Problems with finite-sum structure can be written as (informal)

min
x∈Rd

{
F (x) =

1

n

n∑
i=1

fi(x)

}
.

Assuming smoothness and strong convexity for each fi(·), traditional analysis shows
that GD yields a fast linear convergence rate (i.e., iteration number required to
achieve ε sub-optimality ∝ log(1/ε)) but with a high per-iteration cost (i.e., n cal-
culations of ∇fi(·) per iteration), and thus may not be suitable for problems with
a very large n. As an alternative for large-scale problems, SGD [40] uses only one
or a mini-batch of gradients in each iteration, and thus enjoys a significantly lower
per-iteration complexity than GD. However, due to the undiminished variance of
the gradient estimator, vanilla SGD is shown to yield only a sub-linear convergence
rate. Recently, stochastic variance reduced methods (notably SAG [41], SVRG [16],
SAGA [11], and their proximal variants, such as [43], [47] and [17]) were proposed
to solve this type of problems. All these methods are equipped with various variance
reduction techniques, which help them achieve low per-iteration complexities com-
parable with SGD and at the same time maintain the same linear convergence rate
as GD.

In this chapter, we first review some popular stochastic variance reduced methods
and then introduce the acceleration techniques for these classic methods.

2.1 Preliminaries

In this chapter, we consider problems in standard Euclidean space with the Eu-
clidean norm denoted by ‖·‖. We use Ei to denote that the expectation is taken

3



4 CHAPTER 2. FINITE-SUM CONVEX OPTIMIZATION

with respect to sample i conditioned on all previous randomness and E is to all ran-
domness. We consider optimizing the following composite finite-sum problem, which
arises frequently in machine learning and statistics such as supervised learning and
regularized empirical risk minimization (ERM):

min
x∈Rd

{
F (x) , f(x) + h(x)

}
, (2.1)

where f(x) = 1
n

∑n
i=1 fi(x) is an average of n continuously differentiable and convex

function fi(x), and h(x) is a simple and convex (but possibly non-differentiable)
function. We assume the proximal operator of h(x) is easy to compute, which is

proxηh(v) , argmin
x∈Rd

{
h(x) +

1

2η
‖x− v‖2

}
,∀v ∈ Rd.

Detailed interpretation and examples of proximal operator can be found in [36]. x?

denotes one solution of Problem (2.1). Here, we also define Fi(x) = fi(x)+h(x) with
∇Fi(x) = ∇fi(x) + ∂h(x) and ∂h(x) denotes a sub-gradient of h(·) at x, which will
be used in this chapter.

In order to further categorize the objective functions, we define that a convex
function f : Rd → R is said to be L-smooth if for all x, y ∈ Rd, it holds that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, (2.2)

and µ-strongly convex if for all x, y ∈ Rd,

f(x) ≥ f(y) + 〈G, x− y〉+
µ

2
‖x− y‖2, (2.3)

where G ∈ ∂f(y), the set of sub-gradient of f(·) at y for non-differentiable f(·). If
f(·) is differentiable, we can simply replace G ∈ ∂f(y) with G = ∇f(y). Then we
make the following assumptions to identify the main objective condition (strongly
convex) that is the focus of this chapter:

Assumption 1. In Problem (2.1), each fi(·)1 is L-smooth and convex, h(·) is µ-
strongly convex.

Assumption 2. In Problem (2.1), each fi(·) is L-smooth and convex, h(·) is convex
and F (·) is µ-strongly convex.

1In fact, if each fi(·) is L-smooth, the averaged function f(·) is itself L-smooth — but probably
with a smaller L. We keep using L as the smoothness constant for a consistent analysis.



2.2. VARIANCE REDUCED METHODS 5

Assumption 3. In Problem (2.1), each fi(·) is L-smooth and µ-strongly convex,
h(·) is convex.

The strong convexity assumptions, which are used for different algorithms, have
some subtle differences due to certain analytical requirements. We will discuss this
subtlety for the proposed methods at 2.3.2 and 2.3.4.

We denote κ , L
µ

throughout this chapter, which is known as the condition
number of an L-smooth and µ-strongly convex function.

Oracle complexity in this chapter, denoted by O(·), is the number of calls to
Incremental First-order Oracle (IFO) (i.e., ∇fi(·)) + Proximal operator Oracle (PO).

We focus on achieving a highly accurate solution (very small ε) for Problem (2.1),
although for practical optimization tasks, such as supervised learning, low empirical
risk may result in a high generalization error. In this chapter, we treat Problem (2.1)
as a pure optimization problem.

2.2 Variance reduced methods

Among the recently proposed stochastic variance reduced methods (e.g., SAG [41],
SVRG [16], SAGA [11], SDCA [44], S2GD [18], SARAH [34]), SVRG and SAGA are
the two most recognized and widely used algorithms. This is due to their simplicity
in both algorithm structure and theoretical analysis, and also since their gradient
estimators are unbiased, SVRG and SAGA are more intuitive, in the sense that they
can be understood as the control variate, a well-known technique in Monte-Carlo
simulation [42].

In this section, we review some basic constructions and convergence results of
SVRG and SAGA. First, recall that if we want to estimate an unknown expectation
of a random variable X, suppose that we have another random variable Y , whose
expectation E

[
Y
]

is known, we can construct an unbiased estimation of E
[
X
]

as

XY = X − Y + E
[
Y
]
. (2.4)

This is known as the control variate technique [42]. The variance of XY has the form
V[XY ] = V[X] + V[Y ]− 2 · Cov(X, Y ), where Cov(·, ·) is the covariance. Thus, it is
clear that V[XY ] is smaller when the control variate Y is more positively correlated
to X.

Based on this technique, suppose that now X is a stochastic gradient ∇fi(x), we
want to find some Y that can sufficiently control the variance of ∇fi(x)Y . A natural
idea is that we can choose some previously calculated gradient estimators as Y , since
we want them to be highly correlated. This idea forms the basic constructions of
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SVRG and SAGA. They choose Y in different ways and carefully ensure that E
[
Y
]

is accessible. In the next two subsections, we review them individually in details.

2.2.1 SVRG

Algorithm 1 Prox-SVRG [47]

Input: Initial guess x0 ∈ Rd, learning rate η, epoch number S, epoch length m.
Initialize: x̃0 = x0

0 = x0.
1: for s = 0, . . . ,S − 1 do
2: Compute and store ∇f(x̃s).
3: for k = 0, . . . ,m− 1 do
4: Sample ik uniformly from {1, . . . , n}.
5: ∇̃(1)

xk = ∇fik(xsk)−∇fik(x̃s) +∇f(x̃s).

6: xsk+1 = argminx∈Rd
{
h(x) + 〈∇̃(1)

xk , x〉+ 1
2η
‖x− xsk‖2

}
.

7: end for
8: xs+1

0 = x̃s+1 = 1
m

∑m
i=1 x

s
i .

9: end for
Output: x̃S .

Regarding the control variate construction (2.4), SVRG chooses Y as the stochas-
tic gradient ∇fi(x̃) evaluated at a randomly previously calculated point x̃ [16], and
thus E

[
Y
]

= ∇f(x̃). Suppose at the current iterate, our X in (2.4) is a stochastic
gradient ∇fik(x) calculated using sample ik. Recall that we need to make X and Y
as positively correlated as possible, Y should be chosen as ∇fik(x̃) for this iterate.

Thus, we obtain the following gradient estimator of SVRG (denoted as ∇̃(1)
(·) ):

∇̃(1)
x = ∇fik(x)−∇fik(x̃) +∇f(x̃).

However, we cannot use the same x̃ for the whole optimization process, since as x
moves “far away” from x̃, ∇fik(x) becomes less correlated to ∇fik(x̃), and thus the

variance of ∇̃(1) will be very large. SVRG resolves this problem by regularly updating
x̃ [16], and thus it has a two-loop algorithm structure as shown in Algorithm 1 (here
we bring the proximal variant of SVRG [47] to tackle the potentially non-smooth
h(·) in Problem (2.1) and we choose a uniform sampling scheme for simplicity).

Analysis in [47] shows that Algorithm 1 satisfies the following theorem at the
output point:
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Theorem 2.2.1 (Theorem 1 in [47]). Suppose Assumption 2 holds, if 0 < η < 1
4L

and m is sufficiently large so that

ρ =
1

µη(1− 4Lη)m
+

4Lη(m+ 1)

(1− 4Lη)m
< 1. (2.5)

Then the Prox-SVRG method in Algorithm 1 has geometric convergence in ex-
pectation:

E
[
F (x̃S)− F (x?)

]
≤ ρS [F (x0)− F (x?)] .

For (2.5), we can simply choose η = 1/10L and m = d100κe + 4 to get ρ ≤ 5/6.
Based on this choice, we can estimate the oracle complexity of Algorithm 1: in
order to achieve ε sub-optimality (i.e., E

[
F (x̃S)− F (x?)

]
≤ ε), we need totally S =

O (log((F (x0)− F (x?))/ε)) epochs. Note that for each epoch, we need to calculate
n + m = O(n + κ) stochastic gradients. Thus, the overall oracle complexity for
Prox-SVRG is

O
(

(n+ κ) log

(
F (x0)− F (x?)

ε

))
.

2.2.2 SAGA

Algorithm 2 SAGA [11]

Input: Initial guess x0, learning rate η, iterations number K.
Initialize: “Gradients” table with ∇fi(φ0

i ) = ∇fi(x0) for each i ∈ {1 . . . n} and a
running average for the “gradients” table.

1: for k = 0, 1, . . . , K − 1 do
2: 1. Sample ik uniformly in {1, . . . , n} and compute the gradient estimator using

the running average.
3: ∇̃(2)

xk = ∇fik(xk)−∇fik(φkik) + 1
n

∑n
i=1∇fi(φki ).

4: 2. Perform a proximal gradient step.

5: xk+1 = argminx∈Rd
{
h(x) + 〈∇̃(2)

xk , x〉+ 1
2η
‖xk − x‖2

}
.

6: 3. Take ∇fik(φk+1
ik

) = ∇fik(xk). All other entries in the “gradients” table
remain unchanged. Update the running average.

7: end for
Output: xK

Unlike SVRG, SAGA constructs its control variates (2.4) in a different way. It
chooses Y as a stochastic gradient that is previously calculated. As in SVRG, X
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is a stochastic gradient ∇fik(x) calculated using sample ik. For SAGA, if we want
to choose Y that is as positively correlated to X as possible, we need to pick a
previously calculated stochastic gradient ∇fik(y), which is (1) evaluated at sample
ik and, (2) the point y should not be too “far away” from the current iterate. Thus,
in SAGA, Y is chosen as the ∇fik(·) that is lastly evaluated in previous iterates.
In this case, SAGA maintains a table of gradients ∇fi(φki ) for each i ∈ {1 . . . n},
where φki represents the latest position ∇fi(·) is evaluated at. Note that E

[
Y
]

is the
average of all the gradients in the table for each iterate, which can be updated on
the fly. The stochastic gradient estimator of SAGA (denoted as ∇̃(2)

(·) ):

∇̃(2)
x = ∇fik(x)−∇fik(φkik) +

1

n

n∑
i=1

∇fi(φki ).

Theorem 2.2.2 (Theorem 1 & Corollary 1 in [11]). Suppose Assumption 3 holds,
by choosing η = 1/(2(µn+ L)), the following inequality holds in expectation:

E
[
‖xK − x?‖2

]
≤
(

1− µ

2(µn+ L)

)K (
‖x0 − x?‖2 +

n

µn+ L
(f(x0)− f(x?)− 〈∇f(x?), x0 − x?〉)

)
.

The above theorem depicts the convergence rate of SAGA. In terms of oracle
complexity to achieve ε sub-optimality, SAGA also converges at the rate of

O
(

(n+ κ) log
D0

ε

)
,

where D0 = ‖x0 − x?‖2 + n
µn+L

(f(x0)− f(x?)− 〈∇f(x?), x0 − x?〉). In comparison
with Theorem 2.2.1, the guarantees hold on different objectives, but there is only
constants difference since we have F (x) − F (x?) ≥ µ

2
‖x − x?‖2 based on strong

convexity.

2.3 Accelerations

Inspired by the acceleration technique proposed in Nesterov’s accelerated gradient
descent [33], accelerated variants of stochastic variance reduced methods have been
proposed in recent years, such as Acc-Prox-SVRG [35], APCG [24], APPA [13], Cata-
lyst [23], SPDC [49] and Katyusha [2]. Among these algorithms, APPA and Catalyst
achieve acceleration by using some carefully designed reduction techniques, which,
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[Johnson, R. and Zhang, T., 2013]

[Defazio, A. et al, 2014]

[Lin, H. et al, 2015] & [Frostig , R. et al, 2015]

[Defazio, A., 2016]

[Allen-Zhu, Z., 2017] [Section 2.3.1]

Indirect Acceleration using 
reductions or proximal point variant Nesterov’s Momentum +

Negative Momentum
Using modified

Negative Momentum

Direct Acceleration

Variance Reduction

[Section 2.3.3]

Figure 2.1: The roadmap of accelerated stochastic variance reduced methods.

however, result in additional log factors in their overall oracle complexities (near
optimal). Katyusha, as the first directly accelerated variant of SVRG, introduced
the idea of negative momentum (or Katyusha momentum): regarding the gradient
estimator of SVRG

∇̃(1)
x = ∇fi(x)−∇fi(x̃) +∇f(x̃),

the negative momentum is a (x̃−x) offset added (with decay) to each update in this
epoch. One can interpreted it as the momentum provided by a previously randomly
computed point. Then, by combining it with Nesterov’s momentum, Katyusha yields
the best known2 oracle complexity O((n+

√
κn) log(1/ε)) for strongly convex prob-

lems. Note that a lower bound Ω((n +
√
κn) log(1/ε)) of gradient evaluations for

this type of problems has been proved in [20], and thus Katyusha is optimal up to a
constant factor.

In this chapter, we consider a more refined usage of the negative momentum pro-
posed in Katyusha. In Katyusha, the acceleration is interpreted as using a hybrid of
negative momentum and Nesterov’ momentum [2]. Thus, Katyusha has the following
3-points coupling scheme in each iteration (in the original notations):

xk+1 = τ1zk + τ2x̃
s + (1− τ1 − τ2)yk.

In the next subsection, we show that the coupling steps {yk}, which are understood
as the Nesterov’s momentum part of Katyusha, are not necessary to achieve the

2According to [5], this rate can only be attained when µ is known. Without knowing µ, the best
known rate is O ((n+ κ) log(1/ε)) achieved by [22] and [48]. We assume µ is known throughout
this chapter.
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acceleration. After eliminating the sequence {yk}, we derived a much simpler and
elegant accelerated method, which we call MiG.

Inspired by the simple acceleration techniques used in MiG, we further extended
the techniques to SAGA and proposed the first directly accelerated variant of SAGA,
which we call SSNM. We depict the development of accelerated stochastic variance
reduced methods in Figure 2.3.

2.3.1 MiG: Simple and scalable accelerated SVRG

Algorithm 3 MiG

Input: Learning rate η =

{√
1

3µmL
if m

κ
≤ 3

4
,

2
3L

if m
κ
> 3

4
.
, parameter θ =

{√
m
3κ

if m
κ
≤ 3

4
,

1
2

if m
κ
> 3

4
.
,

epoch number S, epoch length m = Θ(n), initial guess x0.
Initialize: x̃0 = x0

0 = x0, ω = 1 + ηµ;
1: for s = 0, . . . ,S − 1 do
2: Compute and store ∇f (x̃s).
3: for k = 0, . . . ,m− 1 do
4: Sample ik uniformly in {1 . . . n}.
5: yk = θxsk + (1− θ)x̃s. //temp variable y

6: ∇̃(1)
yk = ∇fik(yk)−∇fik(x̃s) +∇f (x̃s).

7: xsk+1 = argminx∈Rd
{

1
2η
‖x− xsk‖2 + 〈∇̃(1)

yk , x〉+ h(x)
}

.

8: end for
9: x̃s+1 = θ

(∑m−1
k=0 ω

k
)−1∑m−1

k=0 ω
kxsk+1 + (1− θ)x̃s.

10: xs+1
0 = xsm.

11: end for
Output: x̃S .

We formally introduce MiG in Algorithm 3. In order to further illustrate some
ideas behind the algorithm structure, we make the following remarks:

• Temp variable y. As we can see in Algorithm 3, y is a convex combination of
x and x̃ with the parameter θ. So for implementation, we do not need to keep
track of y in the whole inner loop. For the purpose of giving a clean proof, we
mark y with iteration number k.

• Fancy update for x̃s. One can easily verify that this update for x̃s is equivalent
to using ωk weighted averaged yk+1 to update x̃s, which is written as: x̃s =
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(∑m−1
k=0 ω

k
)−1∑m−1

k=0 ω
kyk+1. Since we only keep track of x, we adopt this

expended fancy update for x̃s — but it is still quite simple in implementation.

• Choice of xs+1
0 . In recent years, some existing stochastic algorithms such as [16,

47] choose to use x̃s as the initial vector for new epoch. For MiG, when using
x̃s, the overall oracle complexity will degenerate to a non-accelerated one for
some ill-conditioned problems, which is O

(
(n+κ) log (1/ε)

)
. It is reported that

even in practice, using the last iterate yields a better performance as discussed
in [3].

Scalability of MiG: An sparse and asynchronous variant.

Algorithm Complexity Memory S&A

SVRG O
(
(n+ κ) log 1

ε

)
1 Vector

√

SAGA O
(
(n+ κ) log 1

ε

)
1 Vector, 1∇ Table

√

Katyusha O
(
(n+

√
κn) log 1

ε

)
2 Vectors ×

MiG O
(
(n+

√
κn) log 1

ε

)
1 Vector

√

Table 2.1: Comparison of different stochastic variance reduced algorithms. (“Com-
plexity” is for strongly-convex problems. “Memory” is those used to store vari-
ables.“S&A” refers to efficient (lock-free) Sparse & Asynchronous variant.)

Inspired by emerging multi-core computer architectures, asynchronous variants of
the above stochastic gradient methods have been proposed in recent years, e.g., Hog-
wild! [38], Lock-Free SVRG [39], KroMagnon [26] and ASAGA [21]. Among them,
KroMagnon and ASAGA (as the sparse and asynchronous variants of SVRG and
SAGA) enjoy a fast linear convergence rate for strongly convex objectives. However,
there still lacks a variant of accelerated algorithms in these settings.

The main issue for those accelerated algorithms is that most of their algorithm
designs (e.g., [2] and [23]) involve tracking at least two highly correlated coupling
vectors3 (in the inner loop). This kind of algorithm structure prevents us from
deriving efficient (lock-free) asynchronous sparse variants for those algorithms. More
critically, when the number of concurrent threads is large (e.g., 20 threads), the high

3Here we refer to the number of variable vectors involved in one update.
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perturbation (i.e., updates on shared variables from concurrent threads) may even
destroy their convergence guarantees. Thanks to the simplicity of MiG, we are able
to derive efficient sparse and asynchronous variant for it. The variant and its analysis
is formally given in A. We summarize some stochastic variance reduced algorithms
in Table 2.1.

2.3.2 Convergence analysis of MiG

To start the theoretical analysis of MiG, we first give the variance bound of its
stochastic gradient estimator, which is identical to the one in Katyusha.

Lemma 2.3.1. (Variance Bound for MiG) Suppose Assumption 1 holds, we can

upper bound the variance of ∇̃(1)
yk as

Eik
[
‖∇f(yk)− ∇̃(1)

yk
‖2
]
≤ 2L

(
f(x̃s)− f(yk)− 〈∇f(yk), x̃s − yk〉

)
.

Proof. This lemma is identical to Lemma 3.4 in [2], which provides a tighter upper
bound on the gradient estimator variance than those in [16, 47].

In order to prove the convergence of both MiG and SSNM (in subsection 2.3.3),
we also need the following useful lemma, which can be regarded as using the 3-point
equality of Bregman divergence in the Euclidean norm setting:

Lemma 2.3.2. If two vectors xk+1, xk ∈ Rd satisfy xk+1 = argminx∈Rd{h(x) +

〈∇̃, x〉 + 1
2η
‖xk − x‖2} with a vector ∇̃ and a µ-strongly convex function h(·), then

for all u ∈ Rd, we have

〈∇̃, xk+1−u〉 ≤ −
1

2η
‖xk+1−xk‖2+

1

2η
‖xk−u‖2− 1 + ηµ

2η
‖xk+1−u‖2+h(u)−h(xk+1).

Proof. This Lemma is identical to Lemma 3.5 in [2], and hence the proof is omitted.

Then we formally give the convergence rate of MiG in terms of oracle complexity
as follows.

Theorem 2.3.3. Suppose Assumption 1 holds, MiG achieves an ε-additive error
with the following oracle complexities in expectation:{

O
(√

κn log F (x0)−F (x?)
ε

)
, if m

κ
≤ 3

4
,

O
(
n log F (x0)−F (x?)

ε

)
, if m

κ
> 3

4
.

In other words, the overall oracle complexity of MiG is O
(
(n+
√
κn) log F (x0)−F (x?)

ε

)
.
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Proof. In order to give a clean proof, we omit the superscripts for iterates in the
same epoch s as xk instead of xsk unless otherwise specified.

First, we add the following constraint on the parameters η and θ, which is crucial
in the proof of Theorem 2.3.3:

Lθ +
Lθ

1− θ
≤ 1

η
, or equivalently η ≤ 1− θ

Lθ(2− θ)
. (2.6)

We start with convexity of f(·) at yk. By definition, for any vector u ∈ Rd, we have

f(yk)− f(u) ≤ 〈∇f(yk), yk − u〉
= 〈∇f(yk), yk − xk〉+ 〈∇f(yk), xk − u〉
(?)
=

1− θ
θ
〈∇f(yk), x̃s − yk〉+ 〈∇f(yk), xk − u〉, (2.7)

where (?) follows from the fact that yk = θxk + (1− θ)x̃s.
Then we further expand 〈∇f(yk), xk − u〉 as

〈∇f(yk), xk − u〉 = 〈∇f(yk)− ∇̃(1)
yk
, xk − u〉+ 〈∇̃(1)

yk
, xk − xk+1〉+ 〈∇̃(1)

yk
, xk+1 − u〉.

(2.8)
Using L-smooth (2.2) of f(·) at (yk+1, yk), we get

f(yk+1)− f(yk)

≤ 〈∇f(yk), yk+1 − yk〉+
L

2
‖yk+1 − yk‖2

(?)
= θ〈∇f(yk), xk+1 − xk〉+

Lθ2

2
‖xk+1 − xk‖2

= θ
[
〈∇f(yk)− ∇̃(1)

yk
, xk+1 − xk〉+ 〈∇̃(1)

yk
, xk+1 − xk〉

]
+
Lθ2

2
‖xk+1 − xk‖2,

〈∇̃(1)
yk
, xk − xk+1〉

≤ 1

θ

(
f(yk)− f(yk+1)

)
+ 〈∇f(yk)− ∇̃(1)

yk
, xk+1 − xk〉+

Lθ

2
‖xk+1 − xk‖2,

where (?) uses the definition of yk.
After plugging in the constraint (2.6), we have

〈∇̃(1)
yk
, xk − xk+1〉

≤1

θ

(
f(yk)− f(yk+1)

)
+ 〈∇f(yk)− ∇̃(1)

yk
, xk+1 − xk〉

+
1

2η
‖xk+1 − xk‖2 − Lθ

2(1− θ)
‖xk+1 − xk‖2.

(2.9)
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Then we are ready to combine (2.7), (2.8), (2.9), as well as Lemma 2.3.2, which
gives

f(yk)− f(u)

≤ 1− θ
θ
〈∇f(yk), x̃s − yk〉+ 〈∇f(yk)− ∇̃(1)

yk
, xk+1 − u〉

+
1

θ
(f(yk)− f(yk+1))− Lθ

2(1− θ)
‖xk+1 − xk‖2 +

1

2η
‖xk − u‖2

− 1 + ηµ

2η
‖xk+1 − u‖2 + h(u)− h(xk+1).

After taking expectation with respect to the sample ik, we obtain

f(yk)− f(u)

(a)

≤ 1− θ
θ
〈∇f(yk), x̃s − yk〉+ Eik

[
〈∇f(yk)− ∇̃(1)

yk
, xk+1 − xk〉

]
+

1

θ
(f(yk)− Eik

[
f(yk+1)

]
)− Lθ

2(1− θ)
Eik
[
‖xk+1 − xk‖2

]
+

1

2η
‖xk − u‖2

− 1 + ηµ

2η
Eik
[
‖xk+1 − u‖2

]
+ h(u)− Eik

[
h(xk+1)

]
(b)

≤ 1− θ
θ
〈∇f(yk), x̃s − yk〉+

1

2β
Eik
[
‖∇f(yk)− ∇̃(1)

yk
‖2
]

+
β

2
Eik
[
‖xk+1 − xk‖2

]
+

1

θ
(f(yk)− Eik

[
f(yk+1)

]
)− Lθ

2(1− θ)
Eik
[
‖xk+1 − xk‖2

]
+

1

2η
‖xk − u‖2

− 1 + ηµ

2η
Eik
[
‖xk+1 − u‖2

]
+ h(u)− Eik

[
h(xk+1)

]
,

where (a) holds due to the unbiasedness of the gradient estimator Eik
[
∇f(yk) −

∇̃(1)
yk

]
= 0, and (b) uses the Young’s inequality to expand Eik

[
〈∇f(yk)−∇̃(1)

yk , xk+1−
xk〉
]

with the parameter β > 0.

Applying Lemma 2.3.1 to bound the variance term Eik
[
‖∇f(yk) − ∇̃(1)

yk ‖2
]
, we

get

f(yk)− f(u)

≤ 1− θ
θ
〈∇f(yk), x̃s − yk〉+

L

β

(
f(x̃s)− f(yk)− 〈∇f(yk), x̃s − yk〉

)
+
β

2
Eik
[
‖xk+1 − xk‖2

]
+

1

θ
(f(yk)− Eik

[
f(yk+1)

]
)− Lθ

2(1− θ)
Eik
[
‖xk+1 − xk‖2

]
+

1

2η
‖xk − u‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − u‖2

]
+ h(u)− Eik

[
h(xk+1)

]
.
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Let β = Lθ
1−θ > 0, by rearranging the above inequality, we obtain

0 ≤ 1− θ
θ

f(x̃s)−
1

θ
Eik
[
f(yk+1)

]
+ F (u)− Eik

[
h(xk+1)

]
+

1

2η
‖xk − u‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − u‖2

]
(?)

≤ 1− θ
θ

F (x̃s)−
1

θ
Eik
[
F (yk+1)

]
+ F (u)

+
1

2η
‖xk − u‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − u‖2

]
1

θ

(
Eik
[
F (yk+1)

]
− F (u)

)
≤ 1− θ

θ

(
F (x̃s)− F (u)

)
+

1

2η
‖xk − u‖2

− 1 + ηµ

2η
Eik
[
‖xk+1 − u‖2

]
,

(2.10)

where (?) follows from the Jensen’s inequality and the definition of yk+1, which leads
to −h(xk+1) ≤ 1−θ

θ
h(x̃s)− 1

θ
h(yk+1).

Let u = x?, using our choice of ω = 1 + ηµ to sum (2.10) over k = 0 . . .m − 1
with increasing weight ωk. After taking expectation with respect to all randomness
in this epoch, we have

1

θ

m−1∑
k=0

ωk
(
E
[
F (yk+1)

]
− F (x?)

)
+
ωm

2η
E
[
‖xm − x?‖2

]
≤1− θ

θ

m−1∑
k=0

ωk
(
F (x̃s)− F (x?)

)
+

1

2η
‖x0 − x?‖2.

Using the Jensen’s inequality and x̃s+1 = θ
(∑m−1

k=0 ω
k
)−1∑m−1

k=0 ω
kxk+1 + (1 −

θ)x̃s = (
∑m−1

k=0 ω
k)−1

∑m−1
k=0 ω

kyk+1, we have

1

θ

m−1∑
k=0

ωk
(
E
[
F (x̃s+1)

]
− F (x?)

)
+
ωm

2η
E
[
‖xm − x?‖2

]
≤1− θ

θ

m−1∑
k=0

ωk
(
F (x̃s)− F (x?)

)
+

1

2η
‖x0 − x?‖2.

(2.11)

Case I: Consider the first case in Theorem 2.3.3 with m
κ
≤ 3

4
, we set η =

√
1

3µmL
,

θ =
√

m
3κ
≤ 1

2
, and m = Θ(n).
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First, we evaluate the crucial constraint (2.6). By substituting in our parameter
settings, the constraint becomes

Lθ +
Lθ

1− θ
≤ 1

η
→
√
m

κ
≤
√

3

2
.

Thus the constraint is satisfied by meeting the case assumption.
Then we focus on (1− θ)ωm, observed that

(1− θ)ωm =

(
1−

√
m

3κ

)
·

(
1 +

√
1

3mκ

)m

.

Let ζ =
√

m
κ

, ζ ∈ (0,
√

3
2

], we can denote

φ(ζ) =

(
1−
√

3

3
ζ

)
·

(
1 +

√
3

3
· ζ
m

)m

as a function of ζ.
By taking derivative with respect to ζ, we find that φ(ζ) is monotonically de-

creasing on [0,
√

3
2

] for any m > 0, which means

(1− θ)ωm ≤ max
ζ∈(0,

√
3

2
]

φ(ζ) ≤ φ(0) = 1.

Thus we have 1
θ
≥ 1−θ

θ
ωm. By using this inequality in (2.11), we get

1− θ
θ

m−1∑
k=0

ωk
(
E
[
F (x̃s+1)

]
− F (x?)

)
+

1

2η
E
[
‖xm − x?‖2

]
≤ ω−m ·

(1− θ
θ

m−1∑
k=0

ωk
(
F (x̃s)− F (x?)

)
+

1

2η
‖x0 − x?‖2

)
.

Dividing both sides of the above inequality by 1−θ
θ

∑m−1
k=0 ω

k, we get

(
E
[
F (x̃s+1)

]
− F (x?)

)
+

θ

2η(1− θ)
∑m−1

k=0 ω
k
E
[
‖xm − x?‖2

]
≤ ω−m ·

((
F (x̃s)− F (x?)

)
+

θ

2η(1− θ)
∑m−1

k=0 ω
k
‖x0 − x?‖2

)
.
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Summing the above inequality over s = 0 . . .S − 1, we get(
E
[
F (x̃S)

]
− F (x?)

)
+

θ

2η(1− θ)
∑m−1

k=0 ω
k
E
[
‖xS−1

m − x?‖2
]

≤ ω−Sm ·
((
F (x̃0)− F (x?)

)
+

θ

2η(1− θ)
∑m−1

k=0 ω
k
‖x0

0 − x?‖2
)
.

Notice that in order to prevent confusion, we mark iterates with epoch number, such
as xS−1

m represent the last iterate in epoch S − 1.
Using the fact that

∑m−1
k=0 ω

k ≥ m, we have(
E
[
F (x̃S)

]
− F (x?)

)
≤ ω−Sm ·

((
F (x̃0)− F (x?)

)
+

θ

2η(1− θ)m
‖x0

0 − x?‖2
)
.

Using the µ-strongly convexity of F (·) to bound ‖x0
0 − x?‖2, which is ‖x0

0 − x?‖2 ≤
2
µ

(
F (x0

0)− F (x?)
)
, we obtain

E
[
F (x̃S)− F (x?)

]
≤ (1 + ηµ)−Sm ·

(
1 +

θ

η(1− θ)mµ

)
·
(
F (x̃0)− F (x?)

)
.

Note that x̃0 = x1
0 = x0.

By substituting with our parameters setting, we get

E
[
F (x̃S)− F (x?)

] (?)

≤

(
O

(
1 +

√
1

3nκ

))−Sm
·O
(

1 + 2θ

√
κ

n

)
·
(
F (x̃0)− F (x?)

)
≤

(
O

(
1 +

√
1

3nκ

))−Sm
·O
(
F (x̃0)− F (x?)

)
,

where (?) holds due to the fact that θ ≤ 1
2
.

The above result implies that the oracle complexity in the case m
κ
≤ 3

4
to achieve

an ε-additive error is O
(√

κn log F (x̃0)−F (x?)
ε

)
.

Case II: For another case with m
κ
> 3

4
, we set η = 2

3L
, θ = 1

2
, and m = Θ(n).

Again, we evaluate the constraint (2.6) first. By substituting the parameter
setting, the constraint becomes

Lθ +
Lθ

1− θ
≤ 1

η
→ η ≤ 2

3L
.

Thus the constraint is satisfied by our parameter choice.
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Substituting the parameter setting into (2.11), we get

2
m−1∑
k=0

ωk
(
E
[
F (x̃s+1)

]
− F (x?)

)
+

3Lωm

4
E
[
‖xm − x?‖2

]
≤

m−1∑
k=0

ωk
(
F (x̃s)− F (x?)

)
+

3L

4
‖x0 − x?‖2.

Notice that based on the Bernoulli’s inequality, ωm = (1 + 2
3κ

)m ≥ 1 + 2m
3κ
≥ 3

2
, which

leads to
3

2

m−1∑
k=0

ωk
(
E
[
F (x̃s+1)

]
− F (x?)

)
+

9L

8
E
[
‖xm − x?‖2

]
≤

m−1∑
k=0

ωk
(
F (x̃s)− F (x?)

)
+

3L

4
‖x0 − x?‖2,

m−1∑
k=0

ωk
(
E
[
F (x̃s+1)

]
− F (x?)

)
+

3L

4
E
[
‖xm − x?‖2

]
≤2

3
·
(m−1∑
k=0

ωk
(
F (x̃s)− F (x?)

)
+

3L

4
‖x0 − x?‖2

)
.

Again, by telescoping the above inequality from s = 0 . . .S − 1, we get

m−1∑
k=0

ωk
(
E
[
F (x̃S)

]
− F (x?)

)
+

3L

4
E
[
‖xS−1

m − x?‖2
]

≤
(

2

3

)S
·

(
m−1∑
k=0

ωk
(
F (x̃0)− F (x?)

)
+

3L

4
‖x0

0 − x?‖2

)
.

Since
∑m−1

k=0 ω
k ≥ m, the above inequality can be rewritten as follows:(

E
[
F (x̃S)

]
− F (x?)

) (?)

≤
(

2

3

)S
·
(

1 +
3κ

2m

)
·
(
F (x̃0)− F (x?)

)
≤
(

2

3

)S
·O
(
F (x̃0)− F (x?)

)
,

where (?) uses the µ-strongly convexity of F (·), that is, ‖x0
0 − x?‖2 ≤ 2

µ

(
F (x0

0) −
F (x?)

)
.

This result implies that the oracle complexity in this case is O
(
n log F (x̃0)−F (x?)

ε

)
.
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A variant of MiG using Assumption 2.

Algorithm 4 MiG2

Input: Learning rate η =

{√
1

3µmL
if m

κ
≤ 3

4
,

1
2mµ

if m
κ
> 3

4
.
, parameter θ =

{√
m
3κ

if m
κ
≤ 3

4
,

1
2

if m
κ
> 3

4
.
,

outer iteration number R, epoch length m = Θ(n), initial guess x0.
Initialize: x̃0 = x0

0 = x0
restart = x0;

1: for r = 0, . . . ,R− 1 do
2: // Restart every S epochs.

3: S =
⌈
2 ·
(

1−θ
θ

+ 1
ηmµ

)⌉
.

4: Initialize x̃0 = x0
0 = xrrestart.

5: for s = 0, . . . ,S − 1 do
6: Compute and store ∇f (x̃s).
7: for k = 0, . . . ,m− 1 do
8: Sample ik uniformly in {1 . . . n}.
9: yk = θxsk + (1− θ)x̃s.

10: ∇̃(1)
yk = ∇fik(yk)−∇fik(x̃s) +∇f (x̃s).

11: xsk+1 = argminx∈Rd
{

1
2η
‖x− xsk‖2 + 〈∇̃(1)

yk , x〉+ h(x)
}

.

12: end for
13: x̃s+1 = θ

m

∑m−1
k=0 x

s
k+1 + (1− θ)x̃s.

14: xs+1
0 = xsm.

15: end for
16: xr+1

restart = 1
S
∑S−1

s=0 x̃s+1.
17: end for
Output: x̃Rrestart.

As shown in Theorem 2.2.1, SVRG uses the strong convexity Assumption 2 in-
stead of Assumption 1. In comparison, Assumption 2 is slightly more general than
Assumption 1. Here we give a variant of MiG which uses Assumption 2 (MiG2).
However, as we see in Algorithm 4, the variant requires regular restarts and is quite
complicated, which make it less elegant than MiG (Algorithm 3).

Theorem 2.3.4. Suppose Assumption 2 holds, MiG2 achieves an ε-additive error
with the following oracle complexities in expectation:{

O
(√

κn log F (x0)−F (x?)
ε

)
, if m

κ
≤ 3

4
,

O
(
n log F (x0)−F (x?)

ε

)
, if m

κ
> 3

4
.
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In other words, the overall oracle complexity of MiG2 is O
(
(n+
√
κn) log F (x0)−F (x?)

ε

)
.

Proof. In order to prevent redundancies in the proof, we adapt the analysis of Theo-
rem 2.3.3 here. Under Assumption 2, we can regard the µ for h(·) is 0 in Lemma 2.3.2.
In this case, by following the analysis of Theorem 2.3.3 until inequality (2.10), we
obtain (set u = x?)

1

θ

(
Eik
[
F (yk+1)

]
− F (x?)

)
≤ 1− θ

θ

(
F (x̃s)− F (x?)

)
+

1

2η
‖xk − x?‖2

− 1

2η
Eik
[
‖xk+1 − x?‖2

]
.

Summing the above inequality from k = 0, . . . ,m−1 and using Jensen’s inequality
(note that x̃s+1 = θ

m

∑m−1
k=0 xk+1 + (1− θ)x̃s = 1

m

∑m−1
k=0 yk+1), we obtain

1

θ

(
E
[
F (x̃s+1)

]
− F (x?)

)
≤ 1− θ

θ

(
F (x̃s)− F (x?)

)
+

1

2ηm
‖xs0 − x?‖2

− 1

2ηm
E
[
‖xsm − x?‖2

]
,(

E
[
F (x̃s+1)

]
− F (x?)

)
≤ 1− θ

θ

((
F (x̃s)− F (x?)

)
−
(
E
[
F (x̃s+1)

]
− F (x?)

))
+

1

2ηm
‖xs0 − x?‖2 − 1

2ηm
E
[
‖xs+1

0 − x?‖2
]
.

Summing the above inequality from s = 0, . . . ,S−1 and using Jensen’s inequality
(note that xr+1

restart = 1
S
∑S−1

s=0 x̃s+1), we have(
E
[
F (xr+1

restart)
]
− F (x?)

)
≤ 1− θ

θS

((
F (x̃0)− F (x?)

)
−
(
E
[
F (x̃S)

]
− F (x?)

))
+

1

2ηmS
(
‖x0

0 − x?‖2 − E
[
‖xSm − x?‖2

])
≤ 1− θ

θS
(
F (x̃0)− F (x?)

)
+

1

2ηmS
‖x0

0 − x?‖2

(a)

≤ 1

S

(
1− θ
θ

+
1

ηmµ

)(
F (x̃0)− F (x?)

)
(b)

≤ 1

2

(
F (x̃0)− F (x?)

)
,

where (a) follows from the µ-strong convexity of F (·) in Assumption 2 and (b) uses

the choice S =
⌈
2 ·
(

1−θ
θ

+ 1
ηmµ

)⌉
.
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Now it is clear that, for every restart, in expectation we reduce the error by 1
2
.

Thus, in order to achieve an ε-additive error, we need totally O
(

log
(
F (x̃0)−F (x?)

ε

))
restarts.
Case I: Consider the first case with m

κ
≤ 3

4
. By choosing identical parameters settings

η =
√

1
3µmL

, θ =
√

m
3κ
≤ 1

2
and m = Θ(n) as in Algorithm 3 (so the constraint (2.6)

is satisfied), we have S = O(
√

κ
n
), which means that the total oracle complexity is

O
(
S(m+ n) ·O

(
log

F (x̃0)− F (x?)

ε

))
= O

(√
κn log

F (x̃0)− F (x?)

ε

)
.

Case II: Consider another case with m
κ
> 3

4
. By choosing θ = 1

2
, η = 1

2mµ
≤ 1−θ

Lθ(2−θ)
(the constraint (2.6) is satisfied) and m = Θ(n), we have S = O(1), the total oracle

complexity O
(
n log F (x̃0)−F (x?)

ε

)
.

2.3.3 SSNM: The first directly accelerated SAGA

Although a considerable amount of work has been done for accelerating SVRG,
another popular stochastic variance reduced method, SAGA, does not have a directly
accelerated variant until recently. Accelerating frameworks such as APPA or Catalyst
can be used to accelerate SAGA, but the reduction techniques proposed in these
works are always difficult to implement and may also result in additional log factors
in the overall oracle complexity. A notable variant of SAGA is Point-SAGA [10].
Point-SAGA requires the proximal operator oracle of each Fi(·) and with the help
of that, it can adopt a much larger learning rate than SAGA, which results in the
accelerated complexity O((n +

√
κn) log(1/ε)). However, the proximal operator of

each Fi(·) may not be efficiently computed in practice. Even for logistic regression,
we need to run an individual loop (Newton’s method) for its proximal operator oracle.
Therefore, a directly accelerated variant of SAGA is of real interests.

Following the idea of adding only negative momentum to SVRG in MiG, we
consider adding negative momentum to SAGA. However, unlike SVRG, which keeps
a constant snapshot in each inner loop, the “snapshot” of SAGA is a table of points,
each corresponding to the position that the component function gradient ∇fi(·)
was lastly evaluated. Thus, it is non-trivial to directly accelerate SAGA. In this
section, we propose a novel Sampled Negative Momentum for SAGA. We further show
that adding such a momentum has the same acceleration effect as adding negative
momentum to SVRG.

The proposed algorithm SSNM (SAGA with Sampled Negative Momentum) is
formally given in Algorithm 5. As we can see, there are some unusual tricks used
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Algorithm 5 SAGA with Sampled Negative Momentum (SSNM)

Input: Iterations number K, initial point x0, learning rate η =

{√
1

3µnL
if n

κ
≤ 3

4
,

1
2µn

if n
κ
> 3

4
.
,

parameter τ = nηµ
1+ηµ

.

Initialize: “Points” table φ with φ0
1 = φ0

2 = . . . = φ0
n = x0 and a running average

for the gradients of “points” table.
1: for k = 0, 1, . . . , K − 1 do
2: 1. Sample ik uniformly in {1, . . . , n} and compute the gradient estimator using

the running average.
3: ykik = τxk + (1− τ)φkik ;

4: ∇̃(2)

yk
= ∇fik(ykik)−∇fik(φ

k
ik

) + 1
n

∑n
i=1∇fi(φki );

5: 2. Perform a proximal step.

6: xk+1 = arg minx

{
h(x) + 〈∇̃(2)

yk
, x〉+ 1

2η
‖xk − x‖2

}
;

7: 3. Sample Ik uniformly in {1, . . . , n} , take φk+1
Ik

= τxk+1 + (1 − τ)φkIk . All
other entries in the “points” table remain unchanged. Update the running
average corresponding to the change in the “points” table.

8: end for
Output: xK

in Algorithm 5. Thus we elaborate some ideas behind Algorithm 5 by making the
following remarks:

• Coupled point ykik correlates to the randomness of ik. Unlike the negative mo-
mentum used for Katyusha, which comes from a fixed snapshot x̃, the negative
momentum of SAGA can only be found on a “points” table that changes over
time. Thus, in SSNM, we choose to use the ikth entry of the “points” table to
provide the negative momentum, which makes the coupled point correlate to
the randomness of sample ik. In fact, all the possible coupled points yki form a
“coupled table”. Although the table is never explicitly computed, we shall see
that the concept of “coupled table” is critical in the proof of SSNM. The 3rd
step in Algorithm 5 can thus be regarded as sampling a point in such a table.

• “Biased” gradient estimator ∇̃(2)

yk
. The expectation of the semi-stochastic gra-

dient estimator ∇̃(2)

yk
defined in Algorithm 5 is the average of the gradients

computed in the “coupled table”, Eik
[
∇̃(2)

yk

]
= 1

n

∑n
i=1∇fi(yki ), which seems

to be surprising as this expectation (except ∇̃(2)
x0 ) does not correspond to any
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gradient of f(·), but can be used to show convergence to the optimal solution

of F (·). In some sense, ∇̃(2)

yk
is a “biased” gradient estimator.

• Independent samples Ik and ik. The additional sample Ik is crucial for the con-
vergence analysis of Algorithm 5, which chooses an index to store the updated
point in the “points” table. The insight of this choice is that it separates the
randomness of xk+1 and the update index in the “points” table so as to make
certain inequalities valid.

• Two learning rates for two cases. Using different parameter settings for differ-
ent objective conditions (ill-condition and well-condition) is common for accel-
erated methods [45, 2]. If some parameters such as L, µ are unknown, SSNM is
still a practical algorithm with tuning only η and τ , as compared with Katyusha
which has 4 parameters that need to be tuned. Note that we have tried to make
the parameter settings in SSNM similar to Katyusha and MiG. We believe that
it can help conduct some fair experimental comparisons with these methods.

• Only one variable vector with a simple algorithm structure. Same as MiG,
SSNM only has one variable vector in the main loop. Coupled point ykik can be
computed whenever used and does not need to be explicitly stored. Moreover,
SSNM has a one loop structure compared to those variants of SVRG. Such a
structure is good for asynchronous implementation since algorithms with two
loops in this setting always require a synchronization after each inner loop [26].
Moreover, the algorithm structure of SSNM is more elegant than Katyusha and
MiG, both of which require a tricky weighted averaged scheme at the end of
each inner loop4.

Implementation.

We discuss the following implementation issues about SSNM:

• Memory. For many problems associated with loss minimization of linear
predictors (i.e., logistic regression and least squares), we can write each fi(x)
in Problem (2.1) as ψi(〈ai, x〉), where a1, . . . , an are data vectors. In this case,
∇fi(φi) = ∇ψi(〈ai, φi〉) · ai and thus we can reduce the memory consumption
of SAGA by storing the scalar ∇ψi(〈ai, φi〉) instead of the gradient vector.
For Point-SAGA, similar trick can be used for objectives with square loss or

4These two algorithms can adopt an uniformly average scheme, but in this case, both algorithms
require certain restarting tricks, which make them less implementable.
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hinge loss [10]. However, when an `2-regularizer is included in each Fi(·),
the “gradient” of Point-SAGA is correlated with current iterate, and thus the
memory overhead of Point-SAGA will always be O(nd) in this case. For SSNM,
we can reduce the memory complexity by storing the inner product 〈ai, φi〉, and
thus SSNM enjoys the same O(n) memory consumption as that of SAGA. We
provide the key steps of Algorithm 5 using this trick here.

Stored: “Inner products” table Φk with Φk
i = 〈ai, φki 〉 and a running average Ψk.

At iteration k:

1. Sample ik uniformly in {1, . . . , n} and compute the gradient estimator.

〈aik , ykik〉 = τ〈aik , xk〉+ (1− τ)Φk
ik

;

∇̃k =
(
∇ψik(〈aik , ykik〉)−∇ψik(Φ

k
ik

)
)
· aik + Ψk;

2. Perform a proximal update for xk+1.

3. Sample Ik uniformly in {1, . . . , n} , take Φk+1
Ik

= τ〈aIk , xk+1〉+ (1− τ)Φk
Ik

.

4. Update the running average.

Ψk+1 = Ψk +
1

n

(
∇ψIk(Φk+1

Ik
)−∇ψIk(Φk

Ik
)
)
· aIk ;

• Per-iteration complexity. In general, each iteration of SSNM requires com-
puting 4 stochastic gradients, i.e., 2 for calculating the gradient estimator and
2 for updating the running average. In the above case where we use linear
predictors, we may consider storing additional n scalars ∇ψi(Φk

i ) to reduce the
per-iteration IFO calls to 2. In comparison, SAGA only computes 1 stochastic
gradient in an iteration.

• Sparse data vector. We can use the “just in time” update [41] or “lazy/delayed
update” [17] technique for SSNM. The only difference is that in each iteration,
we need to consider the coordinates that belong to support(aik)∪support(aIk).
We may also use the sparse proximal technique in [37], which results in a cleaner
implementation, but at the expense of potentially losing the accelerated rate
as is the case for MiG mentioned in Appendix A.

Since Point-SAGA and SAGA are closely related to SSNM, we compare them in
details in Table 2.2. SSNM yields the same fast O((n+

√
κn) log(1/ε)) convergence

rate as Point-SAGA without requiring additional assumptions, demonstrating the
advantage of direct acceleration. Note that even for logistic regression, the proximal
operator oracle required by Point-SAGA does not have a closed form solution. We
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Complexity Requirements Memory

SAGA O((n+ κ) log(1/ε)) IFO of f(·), PO of h(·) O(nd) or O(n) for L.M.

Point-SAGA O((n+
√
κn) log(1/ε)) PO of each Fi(·) O(nd) or O(n) for L.M.

SSNM O((n+
√
κn) log(1/ε)) IFO of f(·), PO of h(·) O(nd) or O(n) for L.M.

Table 2.2: Comparison of variants of SAGA (All complexities are for strongly convex
objectives, L.M. stands for models using linear predictors).

may need to run several Newton steps for an inexact oracle as in [10]. In comparison,
the gradient oracle required by SSNM and SAGA is much easier to access. For the
memory complexity, as we will discuss in the next subsection, if the objective is some
linear models (e.g., loss function with linear predictors), all three methods enjoy an
efficient O(n) memory overhead. These aspects demonstrate that SSNM is clearly
superior to both SAGA and Point-SAGA.

2.3.4 Convergence analysis of SSNM

In this subsection, we theoretically analyze the performance of SSNM. First, we give a
variance bound of the stochastic gradient estimator of SSNM shown in Lemma 2.3.5.
Since the stochastic gradient estimator of SSNM is computed at a coupled point that
contains randomness, the variance bound for SSNM, unlike most of the variance
bounds in previous work, is built with respect to the expectation of the “biased”
gradient estimator5.

Lemma 2.3.5 (Variance Bound for SSNM). Using the same notations as in Algo-

rithm 5, we can bound the variance of stochastic gradient estimator ∇̃(2)

yk
as

Eik
[∥∥∥∇̃(2)

yk
− 1

n

n∑
i=1

∇fi(yki )
∥∥∥2]

≤2L

(
1

n

n∑
i=1

(
fi(φ

k
i )− f(yki )

)
− 1

n

n∑
i=1

〈
∇fi(yki ), φki − yki

〉)
.

5Other methods using biased gradient estimators include SARAH [34], JacSketch [14]
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Proof.

Eik
[∥∥∥∇̃(2)

yk
− 1

n

n∑
i=1

∇fi(yki )
∥∥∥2]

= Eik
[∥∥∥(∇fik(ykik)−∇fik(φkik))− 1

n

n∑
i=1

(
∇fi(yki )−∇fi(φki )

))∥∥∥2]
(a)

≤ Eik
[∥∥∥∇fik(ykik)−∇fik(φkik)∥∥∥2]

(b)

≤ 2L · Eik
[
fik(φ

k
ik

)− fik(ykik)−
〈
∇fik(ykik), φ

k
ik
− ykik

〉]
= 2L

(
1

n

n∑
i=1

(
fi(φ

k
i )− f(yki )

)
− 1

n

n∑
i=1

〈
∇fi(yki ), φki − yki

〉)
,

where (a) follows from E
[
‖ζ−Eζ‖2

]
≤ E‖ζ‖2 and (b) uses Theorem 2.1.5 in [31].

Now we can formally present the main theorem of SSNM below. As stated in [2],
the major task of the negative momentum is to cancel the additional inner product
term shown in the variance bound so as to keep a close connection in each iteration.
As we shall see shortly, our proposed sampled negative momentum effectively cancels
the inner product term, which is where the acceleration comes from.

Theorem 2.3.6. Let x? be the solution of Problem (2.1), define the following Lya-
punov function T , which is the same as the one in SAGA [11]:

T k , T (xk, φ
k)

,
1

nηµ

(
1

n

n∑
i=1

Fi(φ
k
i )− F (x?)− 1

n

n∑
i=1

〈∇Fi(x?), φki − x?〉

)
+

1

2ηn
‖xk − x?‖2.

If Assumption 1 holds, then by choosing τ = nηµ
1+ηµ

, steps of Algorithm 5 satisfy the

following contraction for the Lyapunov function in expectation (conditional on T k):

Eik,Ik
[
T k+1

]
≤ (1 + ηµ)−1T k.

Thus, by carefully choosing η, we have the following inequalities in two cases:

(I) (For ill-conditioned problems). If n
κ
≤ 3

4
, with η =

√
1

3µnL
it holds that

E
[
‖xK − x?‖2

]
≤

(
1 +

√
1

3nκ

)−K (
2

µ
(F (x0)− F (x?)) + ‖x0 − x?‖2

)
.
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The above inequality implies that in order to reduce the squared norm distance to
ε, we have an O(

√
κn log(1/ε)) oracle complexity as ε→ 0 in expectation.

(II) (For well-conditioned problems). If n
κ
> 3

4
, by choosing η = 1

2µn
, we have

E
[
‖xK − x?‖2

]
≤
(

1 +
1

2n

)−K (
2

µ

(
F (x0)− F (x?)

)
+ ‖x0 − x?‖2

)
.

This inequality implies that in this case we have an O(n log(1/ε)) oracle complex-
ity as ε→ 0 in expectation.

Proof. First, we analyze Algorithm 5 at the kth iteration, given that the randomness
from previous iterations are fixed.

We start with the convexity of fik(·) at (ykik , x
?). By definition, we have

fik(y
k
ik

)− fik(x?)
≤ 〈∇fik(ykik), y

k
ik
− x?〉

(?)
=

1− τ
τ
〈∇fik(ykik), φ

k
ik
− ykik〉+ 〈∇fik(ykik)− ∇̃

(2)

yk
, xk − x?〉+ 〈∇̃(2)

yk
, xk − xk+1〉

+ 〈∇̃(2)

yk
, xk+1 − x?〉,

where (?) uses the definition of the ikth entry of “coupled table” that ykik = τxk +
(1− τ)φkik .

As we will see, the first term on the right side is used to cancel the unwanted
inner product term in the variance bound.

By taking expectation with respect to sample ik and using the unbiasedness that
Eik
[
∇fik(ykik)− ∇̃

(2)

yk

]
= 0, we obtain

1

n

n∑
i=1

fi(y
k
i )− f(x?)

≤1− τ
τn

n∑
i=1

〈∇fi(yki ), φki − yki 〉+ Eik
[
〈∇̃(2)

yk
, xk − xk+1〉

]
+ Eik

[
〈∇̃(2)

yk
, xk+1 − x?〉

]
.

(2.12)

In order to bound Eik
[
〈∇̃(2)

yk
, xk − xk+1〉

]
, we use the L-smoothness of fIk(·) at

(φk+1
Ik

, ykIk) , which is

fIk(φ
k+1
Ik

)− fIk(ykIk) ≤ 〈∇fIk(y
k
Ik

), φk+1
Ik
− ykIk〉+

L

2
‖φk+1

Ik
− ykIk‖

2.
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Taking expectation with respect to sample Ik and using our choice of φk+1
Ik

=

τxk+1 + (1− τ)φkIk as well as the definition of “coupled table”, we conclude that

EIk
[
fIk(φ

k+1
Ik

)
]
− 1

n

n∑
i=1

fi(y
k
i ) ≤ τ

〈 1

n

n∑
i=1

∇fi(yki ), xk+1 − xk
〉

+
Lτ 2

2
‖xk+1 − xk‖2,

〈∇̃(2)

yk
, xk − xk+1〉

≤ 1

τn

n∑
i=1

fi(y
k
i )− 1

τ
EIk
[
fIk(φ

k+1
Ik

)
]

+
〈 1

n

n∑
i=1

∇fi(yki )− ∇̃(2)

yk
, xk+1 − xk

〉
+
Lτ

2
‖xk+1 − xk‖2.

Here we see the effect of the independent sample Ik. It decouples the randomness
of xk+1 and the update position so as to make the above inequalities valid.

Taking expectation with respect to sample ik, we obtain

Eik
[
〈∇̃(2)

yk
, xk − xk+1〉

]
≤ 1

τn

n∑
i=1

fi(y
k
i )− 1

τ
Eik,Ik

[
fIk(φ

k+1
Ik

)
]

+ Eik
[〈 1

n

n∑
i=1

∇fi(yki )− ∇̃(2)

yk
, xk+1 − xk

〉]
+
Lτ

2
Eik
[
‖xk+1 − xk‖2

]
. (2.13)

By upper bounding (2.12) using (2.13) and Lemma 2.3.2 (with h(·) µ-strongly
convex and u = x?), we obtain

1

n

n∑
i=1

fi(y
k
i )− f(x?)

≤ 1− τ
τn

n∑
i=1

〈∇fi(yki ), φki − yki 〉+
1

τn

n∑
i=1

fi(y
k
i )− 1

τ
Eik,Ik

[
fIk(φ

k+1
Ik

)
]

+ Eik
[〈 1

n

n∑
i=1

∇fi(yki )− ∇̃(2)

yk
, xk+1 − xk

〉]
+
Lτ

2
Eik
[
‖xk+1 − xk‖2

]
− 1

2η
Eik
[
‖xk+1 − xk‖2

]
+

1

2η
‖xk − x?‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − x?‖2

]
+ h(x?)− Eik

[
h(xk+1)

]
.
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Here we add a constraint that Lτ ≤ 1
η
− Lτ

1−τ , which is identical to the one

used in MiG. Using Young’s inequality 〈a, b〉 ≤ 1
2β
‖a‖2 + β

2
‖b‖2 to upper bound

Eik
[
〈 1
n

∑n
i=1∇fi(yki )−∇̃(2)

yk
, xk+1−xk〉

]
with β = Lτ

1−τ > 0, we can simplify the above

inequality as

1

n

n∑
i=1

fi(y
k
i )− f(x?)

≤ 1− τ
τn

n∑
i=1

〈∇fi(yki ), φki − yki 〉+
1

τn

n∑
i=1

fi(y
k
i )− 1

τ
Eik,Ik

[
fIk(φ

k+1
Ik

)
]

+
1− τ
2Lτ

Eik
[∥∥∥ 1

n

n∑
i=1

∇fi(yki )− ∇̃(2)

yk

∥∥∥2]
+

1

2η
‖xk − x?‖2

− 1 + ηµ

2η
Eik
[
‖xk+1 − x?‖2

]
+ h(x?)− Eik

[
h(xk+1)

]
.

By applying Lemma 2.3.5 to upper bound the variance term, we see that the ad-
ditional variance term in the variance bound is canceled by the sampled momentum,
which gives

1

n

n∑
i=1

fi(y
k
i )− f(x?)

≤ 1

τn

n∑
i=1

fi(y
k
i )− 1

τ
Eik,Ik

[
fIk(φ

k+1
Ik

)
]

+
1− τ
τn

n∑
i=1

(
fi(φ

k
i )− f(yki )

)
+

1

2η
‖xk − x?‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − x?‖2

]
+ h(x?)− Eik

[
h(xk+1)

]
,

1

τ
Eik,Ik

[
fIk(φ

k+1
Ik

)
]
− F (x?)

≤1− τ
τn

n∑
i=1

fi(φ
k
i ) +

1

2η
‖xk − x?‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − x?‖2

]
− Eik

[
h(xk+1)

]
.

(2.14)
Using the convexity of h(·) and that φk+1

Ik
= τxk+1 + (1− τ)φkIk , we have

h(φk+1
Ik

) ≤ τh(xk+1) + (1− τ)h(φkIk).

After taking expectation with respect to sample Ik and sample ik, we obtain

−Eik
[
h(xk+1)

]
≤ 1− τ

τn

n∑
i=1

h(φki )−
1

τ
Eik,Ik

[
h(φk+1

Ik
)
]
.
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Combining the above inequality with (2.14) and using the definition that Fi(·) =
fi(·) + h(·), we can write (2.14) as

1

τ
Eik,Ik

[
FIk(φ

k+1
Ik

)− FIk(x?)
]

≤1− τ
τ

( 1

n

n∑
i=1

Fi(φ
k
i )− F (x?)

)
+

1

2η
‖xk − x?‖2 − 1 + ηµ

2η
Eik
[
‖xk+1 − x?‖2

]
.

By dividing the above inequality by n and then adding both sides by
1
τn
EIk
[∑n

i 6=Ik

(
Fi(φ

k
i )− Fi(x?)

)]
, we obtain

1

τ
Eik,Ik

[ 1

n

n∑
i=1

Fi(φ
k+1
i )− F (x?)

]
≤ 1− τ

τn

( 1

n

n∑
i=1

(
Fi(φ

k
i )− Fi(x?)

))
+

1

τn
EIk
[ n∑
i 6=Ik

(
Fi(φ

k
i )− Fi(x?)

)]
+

1

2ηn
‖xk − x?‖2 − 1 + ηµ

2ηn
Eik
[
‖xk+1 − x?‖2

]
=

1− τ
τn

( 1

n

n∑
i=1

(
Fi(φ

k
i )− Fi(x?)

))
+

1

τn2

n∑
j=1

n∑
i 6=j

(
Fi(φ

k
i )− Fi(x?)

)
+

1

2ηn
‖xk − x?‖2 − 1 + ηµ

2ηn
Eik
[
‖xk+1 − x?‖2

]
=

1− τ
n

τ

( 1

n

n∑
i=1

Fi(φ
k
i )− F (x?)

)
+

1

2ηn
‖xk − x?‖2 (2.15)

− 1 + ηµ

2ηn
Eik
[
‖xk+1 − x?‖2

]
.

Since 1
n

∑n
i=1 Fi(φ

k
i )− F (x?) may not be positive, we need to involve the following

term in our Lyapunov function:

− 1

n

n∑
i=1

〈∇Fi(x?), φk+1
i − x?〉

= − 1

n
〈∇FIk(x?), φk+1

Ik
− x?〉 − 1

n

n∑
i 6=Ik

〈∇Fi(x?), φki − x?〉

= −τ
n
〈∇FIk(x?), xk+1 − x?〉+

τ

n
〈∇FIk(x?), φkIk − x

?〉

− 1

n

n∑
i=1

〈∇Fi(x?), φki − x?〉.
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After taking expectation with respect to sample Ik and ik, we obtain

Eik,Ik
[
− 1

n

n∑
i=1

〈∇Fi(x?), φk+1
i − x?〉

]
= −

(
1− τ

n

)( 1

n

n∑
i=1

〈∇Fi(x?), φki − x?〉
)
.

(2.16)
In order to give a clean proof, we denote

Dk ,
1

n

n∑
i=1

Fi(φ
k
i )− F (x?)− 1

n

n∑
i=1

〈∇Fi(x?), φki − x?〉,

and Pk , ‖xk− x?‖2, then by combining (2.15), (2.16), we can write the contraction
as

1

τ
Eik,Ik

[
Dk+1

]
+

1 + ηµ

2ηn
Eik
[
Pk+1

]
≤

1− τ
n

τ
Dk +

1

2ηn
Pk. (2.17)

Case I: Consider the first case with n
κ
≤ 3

4
, choosing η =

√
1

3µnL
and τ = nηµ

1+ηµ
=

√
n
3κ

1+
√

1
3nκ

< 1
2
, we first evaluate the parameter constraint:

Lτ ≤ 1

η
− Lτ

1− τ
⇒ 2− τ

1− τ︸ ︷︷ ︸
<3

·
√

n
3κ

1 +
√

1
3nκ︸ ︷︷ ︸

≤
√

n
3κ

≤
√

3n

κ
,

which means that the constraint is satisfied by our parameter choices.
Moreover, with this choice of τ , we have

1

τ(1 + ηµ)
=

1− τ
n

τ
=

1

nηµ
.

Thus, the contraction (2.17) can be written as

1

nηµ
Eik,Ik

[
Dk+1

]
+

1

2ηn
Eik
[
Pk+1

]
≤ (1 + ηµ)−1 ·

( 1

nηµ
Dk +

1

2ηn
Pk

)
.

After telescoping the above contraction from k = 0 . . . K − 1 and taking expec-
tation with respect to all randomness, we have

1

nηµ
E
[
DK

]
+

1

2ηn
E
[
PK
]
≤ (1 + ηµ)−K ·

( 1

nηµ
D0 +

1

2ηn
P0

)
.
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Note that D0 = F (x0) − F (x?) and E
[
DK

]
≥ 0 based on convexity. After

substituting the parameter choices, we have

E
[
‖xK − x?‖2

]
≤
(

1 +

√
1

3nκ

)−K
·
( 2

µ

(
F (x0)− F (x?)

)
+ ‖x0 − x?‖2

)
.

Case II: Consider another case with n
κ
> 3

4
, choosing η = 1

2µn
, τ = nηµ

1+ηµ
=

1
2

1+ 1
2n

< 1
2
.

Again, we first evaluate the constraint:

Lτ ≤ 1

η
− Lτ

1− τ
⇒ τ · 2− τ

1− τ︸ ︷︷ ︸
<3

<
3

2
<

2n

κ
.

Then by rewriting the contraction (2.17), telescoping from k = 0 . . . K − 1 and
taking expectation with respect to all randomness, we obtain

2E
[
DK

]
+

1

2ηn
E
[
PK
]
≤ (1 + ηµ)−K ·

(
2D0 +

1

2ηn
P0

)
.

By substituting the parameter choices, we have

E
[
‖xK − x?‖2

]
≤
(

1 +
1

2n

)−K
·
( 2

µ

(
F (x0)− F (x?)

)
+ ‖x0 − x?‖2

)
.

Transforming Assumption 3 to Assumption 1.

Recall that in Theorem 2.2.2, the strongly convex assumption for SAGA (Assump-
tion 3) is imposed on each fi(·) (or the average f(·) as an extension) [11]. In com-
parison, SSNM requires the strong convexity of h(·) (Assumption 1), which seems
to be critical in the proof. Below we show that the strong convexity assumption of
each fi(·) can be efficiently transformed into Assumption 1.

Suppose we have an objective in the form (2.1) with each fi(·) L-smooth and
µ-strongly convex, h(·) convex and proper (Assumption 3 of SAGA). By defining
f ′i(·) = fi(·) − µ

2
‖·‖2 for each fi(·) and h′(·) = h(·) + µ

2
‖·‖2, the optimal solution

of minimizing F ′(·) = 1
n

∑n
i=1 f

′
i(·) + h′(·) is equivalent to that of (2.1) and it can

be verified that each f ′i(·) is (L− µ)-smooth and convex, h′(·) is µ-strongly convex.
Moreover, the proximal operator proxηh′(v) , arg minx{h′(x) + 1

2η
‖x− v‖2},∀v ∈ Rd

can be efficiently computed as

proxηh′(v) = prox
η/(1+ηµ)
h

(
v

1 + ηµ

)
.
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Conversely, Assumption 1 may not be reducible to Assumption 3 using the above
trick, since the modified regularizer h(·)− µ

2
‖·‖2 may not be as “simple” as h(·).

2.3.5 Understanding the acceleration trick

In [2], the negative momentum (or Katyusha momentum) is described as a “magnet”
that reduces the error of the semi-stochastic gradient estimator for variance reduced
algorithms. Thus, the author combined this idea with Nesterov’s momentum (or
“positive” momentum) to achieve acceleration. However, as shown in Section 2.3.1
(MiG) as well as SSNM, it seems that merely using the negative momentum trick
is enough to obtain the same accelerated convergence rate, which makes this accel-
eration somewhat “counter-intuitive”. In theory, it is clear that with the help of
negative momentum, we can adopt a much tighter variance bound. However, this
theoretical effect does not explain the source of acceleration. In this section, we try
to build a connection between the negative momentum and the standard Nesterov’s
momentum in [31].

For simplicity, we mainly focus on the objective (2.1) with h(·) ≡ 0 in this
section. First, consider the deterministic case with n = 1, SSNM degenerates into an
algorithm with the following key steps6 (with z ∈ Rd denoting the one item “points”
table φ):

yk = τxk + (1− τ)zk;

xk+1 = xk − η · ∇f(yk);

zk+1 = τxk+1 + (1− τ)zk.

This is exactly the scheme of IGA [7] in the Euclidean setting. Note that we can
completely eliminate the sequence {xk}, which results in a simple scheme below.

zk+1 = yk − ητ · ∇f(yk);

yk+1 = zk+1 + (1− τ)(zk+1 − zk).

By carefully choosing parameters η and τ , we recover the original Nesterov’s accel-
erated gradient method with constant stepsize [31]. This observation motivates us
to formulate the key steps in SSNM (Algorithm 5) and MiG (Algorithm 3)7 into the
following schemes (outer loops are omitted for simplicity):

6Actually, in the deterministic case, MiG also degenerates to this scheme.
7We informally adopt a uniform averaged scheme for MiG for simplicity.
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SSNM

∇̃(2)

yk
= ∇fik(ykik)−∇fik(φ

k
ik

) +
1

n

n∑
i=1

∇fi(φki );

φk+1
Ik

= ykIk − ητ · ∇̃
(2)

yk
;

yk+1
ik+1

= φk+1
Ik

+ (1− τ)(φk+1
ik+1
− φkIk);

MiG

for k = 1 . . .m :

∇̃(1)
yk

= ∇fik(ysk)−∇fik(x̃s) +∇f(x̃s);

ysk+1 = ysk − ητ · ∇̃(1)
yk

;

x̃s+1 =
1

m

m∑
k=1

ysk+1;

ys+1
1 = ysm+1 + (1− τ)(x̃s+1 − x̃s);

The underlined parts of both algorithms can be regarded as the source of accel-
eration, since setting τ = 1 makes both algorithms degenerate into SAGA or Prox-
SVRG8. A more careful analysis shows that: For MiG, the momentum x̃s+1 − x̃s is
provided every m stochastic steps, where m = Θ(n) as suggested in Theorem 2.3.3;
for SSNM, although a little bit messy in randomness, we can observe that in expec-
tation, every n steps, the momentum is provided by the newly computed iterate.
In comparison, the momentum in Acc-Prox-SVRG [35] is added in every stochastic
step. However, as analyzed in [35], in pure stochastic setting (mini-batch size is 1)9,
no acceleration can be guaranteed for Acc-Prox-SVRG in theory. The intuition here
is that we may not trust the momentum provided in every stochastic step; instead,
we trust the momentum provided by the average information of n stochastic steps.

Based on the above observation, we may understand the negative momentum
in SSNM and MiG as the Nesterov’s momentum based on average information, in
addition to attaining tighter variance bounds.

8In fact, setting τ = 1 does not make SSNM and MiG exactly the same as SAGA and Prox-
SVRG. For SSNM, the update index for the “points” table is different; for MiG, the initial point
ys+1
1 for the new epoch is different.

9Pure stochastic setting is important since it is proven that in order to achieve the optimal
convergence rate per data access, we should always choose a mini-batch size of 1 for a family of
variance reduction methods [25].
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2.4 Empirical justifications

In this section, we conducted experiments to justify our theoretical results (Theo-
rem 2.3.3 and 2.3.6). All the algorithms were implemented in C++ and executed
through a MATLAB interface for a fair comparison. We ran experiments on an HP
Z440 machine with a single Intel Xeon E5-1630v4 with 3.70GHz cores, 16GB RAM,
Ubuntu 16.04 LTS with GCC 4.9.0, MATLAB R2017b.

We are optimizing the following binary problem with ai ∈ Rd, bi ∈ {−1,+1},
i = 1 . . .m:

Logistic Regression:
1

n

n∑
i=1

log (1 + exp (−biaTi x)) +
λ

2
‖x‖2,

where λ is the regularization parameter and all the datasets used were normalized
before running the experiments.

The experiments were designed as some ill-conditioned problems (with very small
λ), since ill-condition is where all the accelerated first-order methods take effect. We
tested the following algorithms with their corresponding parameter settings:

• SAGA. We set the learning rate as 1
2(µn+L)

, which is analyzed theoretically

in [11].

• SSNM. We used the same settings as suggested in Algorithm 5, which are

η =
√

1
3µnL

and τ = nηµ
1+ηµ

.

• Katyusha. As suggested by the author, we fixed τ2 = 1
2
, set η = 1

3τ1L
and chose

τ1 =
√

m
3κ

[2] (In the notations of the original work).

• MiG. We set η = 1
3θL

and chose θ =
√

m
3κ

as suggested in Algorithm 3.

We report the results in Figure 2.2. From the results, we can make the following
observations to justify the accelerated convergence rates stated in Theorem 2.3.3
and 2.3.6:

• Similar convergence results for all the accelerated methods. In fact, we are sur-
prised by the excellent performance of SSNM on the covtype dataset. For this
dataset, SSNM is even faster than Katyusha and MiG in terms of the number of
epochs (though in theory, Katyusha and MiG yield the same convergence rate
as SSNM). The fast convergence of SSNM in practice imply that the algorithm
could potentially benefit many applications.
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Figure 2.2: Evaluations of SAGA, SSNM, Katyusha and MiG on the a9a dataset
with λ = 10−6 and 10−7 (the first two figures) and the covtype dataset with λ = 10−8

and 10−9 (the last two figures).

• MiG being slightly slower than Katyusha in terms of oracle complexity. We
notice that Katyusha is slightly faster than MiG in terms of the number of
oracle calls, which is reasonable since Katyusha has one more Nesterov’s Mo-
mentum. From the result of Acc-Prox-SVRG in [35], we see that Nesterov’s
Momentum is effective in this case, but without significant improvement. As
analyzed in [35], using large enough mini-batch is a requirement to make Acc-
Prox-SVRG improve its convergence rate in theory (see Table 1 in [35]), which
also explains the limited difference between MiG and Katyusha.

• Around 3 times slow-down when κ is 10 times larger. It can be observed that
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using the same dataset, when we divide λ by 10 (the same as multiply κ by
10), approximately

√
10 times slow-down (

√
10 times more oracle calls required

to achieve the same accuracy) is recorded for all the accelerated methods. In
comparison, SAGA shows significant slow-down when κ is increased in both
experiments. This observation justifies the

√
κ dependency for accelerated

methods.

Another observation is that accelerated methods seem to perform worse in the
experiments on the a9a dataset at first several passes. We conjecture that this
is because the objective is locally well-conditioned around the initial point. For
well-conditioned problem, accelerated methods do not yield a faster rate in theory.
In practice, we always found that a smaller amount of momentum yields a better
performance. Non-accelerated methods (SVRG, SAGA) always perform better in this
case, since they are the accelerated methods without momentum. In the parameter
schemes of SSNM, MiG, and Katyusha, the amounts of negative momentum are all
set to be ≥ 1/2 for simplicity in the proofs. To achieve more consistent performance,
we can derive parameter schemes that have a smaller amount of momentum.



Chapter 3

Highly-smooth Convex
Optimization

Acceleration in convex optimization is always achieved in an intriguing way. Take
the famous Nesterov’s accelerated gradient [33] as an example. Nesterov’s method is
proven to yield an optimal convergence rate O(1/T 2)1 [31] for a class of smooth and
convex problems and has a surprisingly simple algorithm structure. Since the original
work of Nesterov’s method only contains pure algebraic tricks, to intuitively explain
this acceleration becomes an arduous work. Allen-Zhu and Hazan[4] interpret this
acceleration as forming a linear coupling between two slow algorithms, namely gra-
dient descent and mirror descent. Then, the intuition is explained as that Nesterov’s
method finds a perfect balance between these two steps [4]. In the unconstrained
case, we can regard the gradient step as finding an upper bound for the gradient
norm and the mirror step as constructing the corresponding lower bound. Then, us-
ing the correct parameter setting, these two steps are bridged by the gradient norm
and achieve the acceleration.

Beyond the first-order scenario, Nesterov [30] first extended the acceleration tech-
nique (i.e., estimate sequence) into second-order methods, which is called Acceler-
ated Cubic Regularized Newton’s method (Acc-Cubic). The analysis in [30] shows
an O(1/T 3) worst-case complexity for problems with Lipschitz continuous Hessian.
Later in the unpublished work [8], the acceleration technique is extended to solve
the problems with mth-order (m ≥ 1) Lipschitz continuous derivative and yields an
O(1/T (m+1)) convergence rate. Monteiro and Svaiter [28] proposed an accelerated

1Different from previous chapter, where the complexity is based on achieving ε sub-optimality,
we mainly use the accuracy attained by running T iterations to depict the convergence rate, denoted
using O(·).

38
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second-order method A-NPE based on the Large Step A-HPE framework, which
converges at the rate of O(1/T 3.5)2. Recently, Arjevani et al. [6] and Agarwal and
Hazan [1] proved the lower oracle complexity bounds for second-order methods. Spe-
cially, the lower bound given in [6] justifies that A-NPE is near optimal. Nesterov [32]
provided refined analyses to the above topics. While writing this thesis, we noticed
that two works [15, 9] independently proposed generalized versions of A-HPE and

all of them converges at the rate of O(1/T
3m+1

2 ).

In this chapter, we provide an acceleration framework that has a coupling struc-
ture, which covers many accelerated high-order methods as its instances. Based on
this framework, we show that the intuition of upper bounding and lower bound-
ing the gradient norm is generalized to the high-order case. Moreover, we provide
insights that lead to the potential of constructing new high-order methods.

3.1 Preliminaries

In this chapter, we consider the problem in a finite dimensional inner product real
vector space3, denoted by E and we use 〈·, ·〉 and ‖·‖ to denote the inner product and
the induced norm, respectively. We are interested in solving the following problem
in this section:

min
x∈E

f(x), (3.1)

where f : E → R is convex and m times differentiable (m ≥ 1) with its directional
derivatives (with 1 ≤ p ≤ m) along the directions vi ∈ E, i = 1, . . . , p, denoted as

∇pf(·)[v1, . . . , vp].

For any x ∈ E, the norm of ∇pf(x) is defined as

‖∇pf(x)‖ = max
‖v1‖=1

· · · max
‖vp‖=1

∇pf(x)[v1, . . . , vp].

2Since each iteration of A-NPE involves a line search procedure, which requires O
(
log( 1

ε )
)

calls to the second-order oracle (f(·),∇f(·),∇2f(·)) with ε denoting the required accuracy, A-NPE
requires at most O

(
ε−2/7 log( 1

ε )
)

oracle calls to reduce the error to ε. Then, we can make a fair

comparison between A-NPE and Acc-Cubic, whose convergence rates are O(log3.5(K)/K3.5) and
O(1/K3) with K denoting the number of oracle calls, respectively.

3The most general problem setting for accelerated high-order methods in the literature, to the
best of our knowledge, is a finite-dimensional real vector space together with a conjugate Euclidean
norm [30]. We consider a simpler problem setting in this section.
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We use f
(m)
x (·) to denote the mth-order Taylor approximation of f(·) at x, which is

for any y ∈ E,

f (m)
x (y) = f(x) +∇f(x)[y − x] + · · ·+ 1

m!
∇mf(x)[y − x, . . . , y − x].

Then, we assume the following regularity on f :

Assumption 3.1.1. The mth-derivative of f(·) is Lm-Lipschitz continuous, which
is for any x, y ∈ E,

‖∇mf(x)−∇mf(y)‖ ≤ Lm‖x− y‖.

Based on this assumption and by the standard integration arguments, we can
conclude the following useful results: for any x, y ∈ E,

|f(y)− f (m)
x (y)| ≤ Lm

(m+ 1)!
‖y − x‖m+1, (3.2)

‖∇f(y)−∇f (m)
x (y)‖ ≤ Lm

m!
‖y − x‖m. (3.3)

Moreover, the following definitions are also used in this chapter and thus we state
here for completeness.

Definition 3.1.2 (Bregman divergence). Given a strictly convex and continuously
differentiable function d(·) on E, for any x, y ∈ E, the Bregman divergence is defined
as

Vd(x, y) , d(x)− d(y)− 〈∇d(y), x− y〉.

Definition 3.1.3 (Uniformly convex [46]). We say a differentiable function g(·) on
E is m-uniformly convex (m ≥ 2) with parameter µm if for any x, y ∈ E,

g(y)− g(x)− 〈∇g(x), y − x〉 ≥ µm
m
‖x− y‖m.

As a concrete example of uniformly convex functions, we give the following lemma,
which is identical to Lemma 4 (2.7) in [30],

Lemma 3.1.4. Let dm(x) , 1
m
‖x− x0‖m for some x0 ∈ E and m ≥ 2, then dm(·) is

m-uniformly convex with µm = 1
2m−2 .

Specially, we fix a point x0 ∈ E as the initial state and denotes x? as one solution
of problem (3.1). T is also given as the iteration number to be executed.
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Algorithm 6 High-order Linear Coupling (HLC) at step k

Input: yk, zk ∈ E, the mth-order Taylor approximation f
(m)
x (·), a regularizer R(·, ·),

a Bregman divergence Vd(·, ·).
1: xk+1 = τkzk + (1− τk) yk.
2: yk+1 ∈ first-order stationary points of

{
γkf

(m)
xk+1(x) +R(x, xk+1) | x ∈ E

}
.

3: zk+1 = arg minx∈E

{
〈ηk∇f(yk+1), x− zk〉+ Vd(x, zk)

}
.

3.2 A General Acceleration Framework

Our proposed High-order Linear Coupling (HLC) is formally given in Algorithm 6
(with 0 < τk < 1, γk > 0, ηk > 0 undetermined). In order to clearly illustrate the
underlying ideas, we make the following remarks:

• A “microscopic” perspective. In [31], Nesterov described that the construc-
tion of the accelerated method based on taking a “global” viewpoint, which is
first deciding certain relation formulas and then trying to ensure them in the
algorithm design. In this chapter, we instead take a “microscopic” perspec-
tive, which means that we inspect the accelerated methods by first building
a contraction in one step and then deciding the parameter choices or initial
state when telescoping. We believe that such a perspective directly reflects
the influence of algorithmic components and sometimes is easier to understand
intuitively.

• Coupling structure. Following [4], we formulate Algorithm 6 as the result of
coupling a regularized high-order step and a mirror step4. Although differences
such as the choice of hyperplane in Step 3 can be observed, we will show that
the intuition of HLC, similar to that of Linear Coupling [4], is still balancing
the upper bound and lower bound of gradient norm.

• A potentially non-convex auxiliary problem in Step 2. When m > 2, sometimes
we cannot ensure that the auxiliary problem is convex (e.g., the corresponding
auxiliary problem in Algorithm 4.2 [8]). Fortunately, it seems that obtaining a
stationary point is enough to achieve the acceleration in some cases.

4As specified in Preliminaries 3.1 and to be concluded in Section 3.7, at the current point, high-
order methods do not work for non-Euclidean norms and thus the choice of Bregman divergence
in Step 3 is limited to Vdp(·, ·) for some positive integer p. However, to stress on this potential
improvement, we keep using Vd(·, ·) here.



42 CHAPTER 3. HIGHLY-SMOOTH CONVEX OPTIMIZATION

As we can see, the mirror step (Step 3) does not correlate to mth-order Taylor
model. Recall that the mirror steps are trying to construct lower bound to the
optimal value f ?. Thus, we may conclude the following intuition to explain this
choice: (1) The hyperplane 〈∇f(yk+1), x〉 is a reasonably good lower bound in high-
order case and can be regarded as a natural adaption from the first-order case5. (2)
The mirror step could be easy to solve in practice since we can write it as

arg min
x∈E

{
〈ηk∇f(yk+1)−∇d(zk), x〉+ d(x)

}
,

which is to minimize the summation of a linear function and d(·).
Since in HLC, the mirror step (Step 3) and the convex combination (Step 1) are

relatively fixed, let us see what we can conclude from these two steps.

Theorem 3.2.1. Using the settings and based on Step 1 and Step 3 in Algorithm 6,
defining the following residual term at step k:

SkHLC = 〈∇f(yk+1), zk+1 − zk〉+
1

ηk
Vd(zk+1, zk) +

1

τk
〈∇f(yk+1), xk+1 − yk+1〉, (3.4)

we can conclude that

1

τk

(
f(yk+1)−f(x?)

)
≤ 1− τk

τk

(
f(yk)−f(x?)

)
+

1

ηk

(
Vd(x

?, zk)−Vd(x?, zk+1)
)
−SkHLC .

(3.5)

Proof. Using the optimality condition for zk+1 and the triangle equality of Bregman
divergence, we have

〈ηk∇f(yk+1), zk+1 − x?〉 = 〈∇d(zk+1)−∇d(zk), x
? − zk+1〉

= Vd(x
?, zk)− Vd(x?, zk+1)− Vd(zk+1, zk).

Thus,

〈ηk∇f(yk+1), zk − x?〉 = −
(
〈ηk∇f(yk+1), zk+1 − zk〉+ Vd(zk+1, zk)

)
+ Vd(x

?, zk)− Vd(x?, zk+1).

For the left side of above equality, by the definition of xk+1, we have

〈∇f(yk+1), zk − x?〉 =
〈
∇f(yk+1),

1

τk
(xk+1 − yk+1) +

1− τk
τk

(yk+1 − yk) + yk+1 − x?
〉

(3.6)

≥ 1

τk
〈∇f(yk+1), xk+1 − yk+1〉+

1

τk
f(yk+1)− 1− τk

τk
f(yk)− f(x?).

5The choice of “normal vector” is different, in our notation, Linear Coupling chooses
∇f(xk+1) [4].
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Re-arranging the above inequalities completes the proof.

From (3.5), a direct observation is that if we can ensure SkHLC ≥ 0 for k =
0, . . . , T − 1 and somehow determine the relation between ηk and τk, the inequal-
ity (3.5) potentially telescopes. Note that the goal of building contraction in one
step is to form a relation that telescopes. Since then, we can depict the difference
between the error at the output point and the initial point. A simple case is that
SkHLC ≥ 0 is satisfied and ηk = 1

Cτβk
with two constants C > 0 and β > 0 given.

In this case, all the possible parameter settings are concentrated into the choice of
{τk}T−1

k=0 and we can conclude the following result:

Proposition 3.2.2. Suppose that we have sequences of vectors {yk}Tk=0, {zk}Tk=0 that
satisfy the following contraction for any k ∈ {0, . . . , T − 1}:

1

τ ρk

(
f(yk+1)− f(x?)

)
≤ 1− τk

τ ρk

(
f(yk)− f(x?)

)
+C0

(
Vd(x

?, zk)− Vd(x?, zk+1)
)
, (3.7)

where ρ ≥ 1 and C0 > 0 are constants and {τk}T−1
k=0 are variables with 0 < τk ≤ ρ

ρ+1
<

1, we can conclude that

f(yT )− f(x?) ≤
(ρ+ 1)ρ−1

(
f(y0)− f(x?)

)
+ C0ρ

ρVd(x
?, z0)

(T + ρ)ρ
,

which implies an O(1/T ρ) convergence rate.

Proof. First, for any k ∈ {0, . . . , T − 1}, by setting τk = ρ
k+ρ+1

, we have(
1− 1

k + ρ+ 2

)ρ
≥ k + 2

k + ρ+ 2
=⇒ 1

τ ρk
≥ 1− τk+1

τ ρk+1

.

Then, by telescoping (3.7) from k = 0, . . . , T − 1, we obtain

1

τ ρT−1

(
f(yT )− f(x?)

)
≤ 1− τ0

τ ρ0

(
f(y0)− f(x?)

)
+ C0Vd(x

?, z0).

Substituting the parameter setting for τT−1 completes the proof.

After clearly identifying the target in analysis, we then focus on how to ensure
the crucial requirement: SkHLC ≥ 0 for k = 0, . . . , T − 1. Note that since SkHLC
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contains ηk and τk (see (3.4)), the relation between ηk and τk is always determined
when attempting to ensure this requirement. First, let us identify the terms in SkHLC :

SkHLC = 〈∇f(yk+1), zk+1 − zk〉+
1

ηk
Vd(zk+1, zk)︸ ︷︷ ︸

Mirror Terms (Step 3)

+
1

τk
〈∇f(yk+1), xk+1 − yk+1〉︸ ︷︷ ︸

High-order Term (Step 2)

. (3.8)

For the mirror terms, it is standard to lower bound them assuming that Vd(·, ·)
is uniformly convex at some degree6.

Lemma 3.2.3. If d(·) is m-uniformly convex with parameter µm, then the mirror
terms in SkHLC satisfy

〈∇f(yk+1), zk+1 − zk〉+
1

ηk
Vd(zk+1, zk) ≥ −

m− 1

m

(
ηk
µm

) 1
m−1

‖∇f(yk+1)‖
m
m−1 .

Proof. Using Young’s inequality, we have

〈∇f(yk+1), zk+1 − zk〉+
1

ηk
Vd(zk+1, zk)

≥ −‖∇f(yk+1)‖ · ‖zk − zk+1‖+
µm
ηkm
‖zk − zk+1‖m

≥ −

(
m− 1

m

(
ηk
µm

) 1
m−1

‖∇f(yk+1)‖
m
m−1 +

µm
ηkm
‖zk − zk+1‖m

)
+

µm
ηkm
‖zk − zk+1‖m

= −m− 1

m

(
ηk
µm

) 1
m−1

‖∇f(yk+1)‖
m
m−1 .

Then, based on the above lower bound and regarding SkHLC in the one-step con-
traction (3.5), we can now interpret the function of mirror step in Algorithm 6 as
lower-bounding the gradient norm ‖∇f(yk+1)‖

m
m−1 , which is consistent with the in-

terpretation in Linear Coupling [4].
Finally, in order to ensure SkHLC ≥ 0, the only problem left is how to upper

bound the gradient norm by the high-order term in SkHLC . The intuition here is also
generalized naturally from the first-order case where we use gradient steps to provide
such an upper bound [4]. In the following subsections, we discuss several methods
that can be regarded as instances of HLC.

6For example, standard mirror descent requires Vd(·, ·) to be strongly convex (2-uniformly con-
vex).
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3.3 Accelerated Second-order Methods

In the second-order case, which is also the first high-order case where acceleration was
introduced, we consider problem (2.1) where f(·) has L2-Lipschitz continuous Hessian
(Assumption 3.1.1 with m = 2). Known results include that Acc-Cubic achieves an
O(1/T 3) convergence rate [30] and A-NPE achieves an O(1/T 3.5) rate [28]. It seems
that they are equipped with different analysis and acceleration techniques. To clearly
understand this diversity, we cast both of them into instances of HLC (Algorithm 6)
and then follow the analysis framework of HLC to provide unified proofs for them.

3.3.1 Acc-Cubic

Observing the auxiliary problems of the accelerated scheme in [30], we may cast
Acc-Cubic as the following instance of HLC:

Instance 1. Acc-Cubic corresponds to a case of Algorithm 6 where m = 2, ∀x, y ∈
E, R(x, y) = 1

6
‖x−y‖3 and d(·) is 3-uniformly convex with parameter µ3 (e.g., choose

d(·) = d3(·)).

As specified at (3.8), the major task is to upper bound the gradient norm at yk+1

by the high-order term. The following lemma provides this critical relation, which is
identical to Lemma 6 in [30].

Lemma 3.3.1. In Instance 1, for k = 0, . . . , T − 1, if γk = 1
2L2

, then

〈∇f(yk+1), xk+1 − yk+1〉 ≥
√

2

3L2

‖∇f(yk+1)‖
3
2 .

Then, we obtained the upper bound (Lemma (3.3.1)) and lower bound (Lemma (3.2.3)
with m = 3) for the gradient norm. The only task left is to carefully balance them
to ensure SkHLC ≥ 0.

Proposition 3.3.2. In Instance 1, for k = 0, . . . , T − 1, by setting ηk = 3µ3
2τ2kL2

, we

have SkHLC ≥ 0.

Proof. Based on the choices in Instance 1 and using Lemma 3.3.1, Lemma 3.2.3 with
m = 3, we have

SkHLC ≥ 〈∇f(yk+1), zk+1 − zk〉+
µ3

3ηk
‖zk+1 − zk‖3 +

√
2

3τ 2
kL2

‖∇f(yk+1)‖
3
2

≥

(√
2

3τ 2
kL2

− 2

3

√
ηk
µ3

)
‖∇f(yk+1)‖

3
2 .
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Substituting the choice of ηk completes the proof.

Thus, by substituting the choice of ηk in Theorem 3.2.1 and since no limitation is
imposed on the choice of {τk}T−1

k=0 , we can directly apply Proposition 3.2.2 to estimate
the convergence rate of Instance 1:

Corollary 3.3.3. For Instance 1, using the result in Proposition 3.3.2 and based
on Theorem 3.2.1, we can apply Proposition 3.2.2 with ρ = 3 and C0 = 2L2

3µ3
, which

concludes an O(1/T 3) convergence rate. Concisely, with y0 = z0 = x0 chosen, the
following inequality holds at step T − 17:

f(yT )− f(x?) ≤
16
(
f(x0)− f(x?)

)
+ 18

µ3
L2Vd(x

?, x0)

(T + 3)3
.

As we can see in Proposition 3.3.2, the intuition of coupling is generalized natu-
rally from the first-order case [4].

3.3.2 A-NPE

In this section, we consider a more complicated second-order method A-NPE [28],
an accelerated variant of the NPE method analyzed in [27], which achieves the near
optimal convergence rate in this case [6]. For simplicity, we do not consider a com-
posite proximal function and the inexactness in the Newton solution of A-NPE, that
is we fix h(·) ≡ 0 and εk+1 = 0 (in the original notation). Similarly, to clearly under-
stand the intuition behind the superior rate, we cast A-NPE as an instance of HLC
(Algorithm 6):

Instance 2. A-NPE corresponds to a case of Algorithm 6 where m = 2, ∀x, y ∈
E, R(x, y) = 1

2
‖x − y‖2 and d(·) is strongly convex with parameter µ2 (e.g., choose

d(·) = d2(·)).

Perhaps the most tricky part of A-NPE is a line search procedure required in
each step, which ensures the conditions in the following proposition (here we do not
specify the dependency between τk and γk for ease of reading. As will be specified
at (3.10), τk depends on γk and thus xk+1 depends on γk.):

Proposition 3.3.4 (Line search, Section 7, [28]). In Instance 2, defining σ =
L2γk

2
‖yk+1 − xk+1‖ with 0 < σl < σr < 1 and ρ̄ > 0 given as constants, we can

use the line search procedure in [28] to either obtain a γk that satisfies σl ≤ σ ≤ σr
or justify that ‖∇f(yk+1)‖ ≤ ρ̄.

7Note that we do not optimize the constants in this chapter for consistency.
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In order to analyze the worst-case performance of A-NPE, we assume that A-
NPE does not terminate8 before step T (i.e., we can always find a γk in the above
proposition for k = 0, . . . , T − 1). At this point, the intuition of the line search pro-
cedure is still not clear. Let us start with constructing the per-iteration contraction
for A-NPE following the analysis of HLC.

Proposition 3.3.5. In Instance 2, for k = 0, . . . , T − 1, if ηk = γkµ2
τk

, then SkHLC ≥
1−σ2

r

2γkτk
‖yk+1 − xk+1‖2 > 0.

Proof. First, based on the optimal condition of yk+1, we can conclude that

−∇f (2)
xk+1

(yk+1) =
1

γk
(yk+1 − xk+1).

Using the L2-Lipschitz continuity of Hessian (3.3) and the definitions in Propo-
sition 3.3.4, we have

L2
2

4
‖yk+1 − xk+1‖4 ≥ ‖∇f(yk+1)−∇f (2)

xk+1
(yk+1)‖2

= ‖∇f(yk+1) +
1

γk
(yk+1 − xk+1)‖2

= ‖∇f(yk+1)‖2 +
2

γk
〈∇f(yk+1), yk+1 − xk+1〉

+
1

γ2
k

‖yk+1 − xk+1‖2,

〈∇f(yk+1), xk+1 − yk+1〉 ≥
γk
2
‖∇f(yk+1)‖2 +

1− σ2

2γk
‖yk+1 − xk+1‖2.

Then, we can lower bound SkHLC using the above inequality and Lemma 3.2.3
with m = 2,

SkHLC ≥
(
γk
2τk
− ηk

2µ2

)
‖∇f(yk+1)‖2 +

1− σ2

2γkτk
‖yk+1 − xk+1‖2

(ηk=
γkµ2
τk

)

=
1− σ2

2γkτk
‖yk+1 − xk+1‖2.

Based on the property of γk in Proposition 3.3.4, SkHLC ≥
1−σ2

r

2γkτk
‖yk+1−xk+1‖2 > 0.

8If the line search fails to find a γk in Proposition 3.3.4, the algorithm terminates since yk+1 is
close enough to the optimal solution set.
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Now it is clear that the line search procedure ensures that SkHLC is bounded away
from 0 for k = 0, . . . , T − 1, which, as we will see, boosts the convergence rate of
A-NPE.

By applying Theorem 3.2.1 with SkHLC bounded as in the above proposition, we
obtain the following per-iteration contraction for A-NPE:

γk
τ 2
k

(
f(yk+1)− f(x?)

)
≤ γk(1− τk)

τ 2
k

(
f(yk)− f(x?)

)
+

1

µ2

(
Vd(x

?, zk)− Vd(x?, zk+1)
)

− 1− σ2
r

2τ 2
k

‖yk+1 − xk+1‖2.

(3.9)

Another tricky part of A-NPE is that, all the parameter choices should be concen-
trated into the choice of {γk}T−1

k=0 since that, based on Proposition 3.3.4, we cannot
determine anything “concrete” for the sequence {γk}T−1

k=0 . The only property we
can figure out is that limk→∞ γk = ∞, but it does not contribute to formulating
a per-iteration contraction that telescopes. Thus, in order to telescope (3.9), for
k = 0, . . . , T − 1, we may adopt the following parameter scheme:

γk
τ 2
k

=
γk+1(1− τk+1)

τ 2
k+1

⇒ γk
τ 2
k

τ 2
k+1 + γk+1τk+1 − γk+1 = 0. (3.10)

Then, the dependencies are that given γk and τk, τk+1 is the positive solution (≤ 1)
of the above equation, which correlates to γk+1. Note that this parameter scheme
leaves τ0 undecided and is indeed identical to the original parameter choice9 in [28].

Proposition 3.3.6. In Instance 2, using the parameter scheme (3.10), at iteration
T − 1, we have

γT−1

τ 2
T−1

(
f(yT )− f(x?)

)
+

1− σ2
r

2

T−1∑
k=0

1

τ 2
k

‖yk+1 − xk+1‖2

≤γ0(1− τ0)

τ 2
0

(
f(y0)− f(x?)

)
+

1

µ2

Vd(x
?, z0).

Proof. This proposition is a direct result of telescoping (3.9) from k = 0, . . . , T −
1.

9One can verify that by re-assigning the notation (γk → λk+1,
γk
τ2
k
→ Ak+1,

γk
τk
→ ak+1), the

parameter scheme in this section is equivlent to the original work.
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Denote D0 = γ0(1−τ0)

τ20

(
f(y0)− f(x?)

)
+ 1

µ2
Vd(x

?, z0). Note that by setting τ0 = 1,

y0 = z0 = x0 and choosing d(·) = 1
2
‖x − x0‖2, Proposition 3.3.6 is equivalent to

Theorem 3.6 in [28].
In comparison with the final contraction of Acc-Cubic (Proposition 3.2.2), the

extra term in Proposition 3.3.6 is a direct result of bounding SkHLC away from 0.
This term plays a crucial role in estimating how fast γT−1

τ2T−1
grows with respect to T .

The proof to the next lemma is similar to that of Theorem 4.1 in [28] and is given
in Appendix B.2.

Lemma 3.3.7. Based on Proposition 3.3.4, 3.3.6 and the parameter scheme (3.10),
setting τ0 = 1, the following inequality holds:

γT−1

τ 2
T−1

≥

√
2(1− σ2

r)

37D0

σl
L2

· T
7
2 .

Now it is clear that using Lemma 3.3.7 and Proposition 3.3.6, we can obtain an
O(1/T 3.5) convergence rate for A-NPE.

3.3.3 Comments

Based on the analysis in this subsection, some interesting observations can be made:

1. The only source of cumulated information in Acc-Cubic is the previous iterates
yk and zk. In comparison, A-NPE utilizes another cumulated information to
build its convergence rate, which is the lower bound of

∑T−1
k=0 S

k
HLC . In some

sense, the scope of A-NPE is more “global” than Acc-Cubic.

2. For Acc-Cubic, both the high-order steps and mirror steps themselves (i.e., set-
ting τk = 0 or 1, respectively) are convergent sequences whose convergence rates
are O(1/T 2) [30] and O(1/T ), respectively (assuming a bounded level set); For
A-NPE, the high-order steps themselves (together with the line search proce-
dure), which are exactly the steps of NPE [27], achieve an O(1/T 1.5) rate on
the ergodic mean of the iterates (Proposition 7.5 [27]). In fact, for the auxiliary
problem in one high-order step of A-NPE, the line search procedure in Propo-
sition 3.3.4 only ensures it to be an upper estimation at point yk+1. Compared
with solving a global upper estimation in each Cubic step, this choice com-
plicates the analysis and also does not yield a better convergence rate. This
observation suggests that we may not need to choose a good convergent se-
quences to be the high-order steps in HLC, since, as reflected in Theorem 3.2.1,
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the only requirement for the high-order steps is to provide a good lower bound
for 〈∇f(yk+1), xk+1 − yk+1〉.

Although A-NPE achieves a faster iteration rate than Acc-Cubic, from a practical
viewpoint, considering the oracle efficiency10 of these two algorithms, the superior
iteration rate may be killed by the additional logarithm time oracle calls in each
A-NPE step. To make this point clear, as mentioned in footnote 2, if the required
accuracy is ε, A-NPE and Acc-Cubic require O

(
ε−2/7 log(1

ε
)
)

and O(ε−1/3) oracle
calls to reduce the additive error to ε, respectively. If we ignore the constants and
other variables in these bounds, we may need to optimize the problem to 10−32

accuracy in order to show the superiority of the improved rate. This problem is
exacerbated when considering the tensor variants for these two algorithms in the
following section.

3.4 Accelerated Tensor Methods

As a natural generalization of second-order methods, in this subsection, we consider
accelerated tensor (or high-order) methods. Similarly, we focus on problem (2.1)
under high-order setting, which is that f(·) has Lm-Lipschitz continuous m-th order
derivative (Assumption 3.1.1). In [8], Baes generalized the idea in Acc-Cubic to the
high-order setting and achieves an O(1/Tm+1) rate. Recently, Nesterov [32] revisited
this problem and discussed ways to improve the implementability of accelerated
tensor methods. Two concurrent works [15, 9] propose generalized versions of A-

HPE and they all achieve an O(1/T
3m+1

2 ) rate.

3.4.1 Acc-Tensor

The accelerated tensor methods (Acc-Tensor) based on the estimate sequence tech-
nique have been discussed in [8, 32]. The algorithm structures of the two methods
are almost identical with the only difference in the regularization parameter of the
high-order steps. The parameter choice in [32] ensures the convexity of the auxiliary
problem, which makes it easier to solve. Here we consider the Nesterov’s version of
Acc-Tensor and cast it as an instance of HLC.

Instance 3. Acc-Tensor corresponds to a case of Algorithm 6 where m ≥ 2 and
∀x, y ∈ E, R(x, y) = m

(m+1)!
‖x − y‖m+1 and d(·) is (m + 1)-uniformly convex with

parameter µm+1 (e.g., choose d(·) = dm+1(·)).

10Oracle calls are always considered as the most computationally intensive operation in the algo-
rithm.
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Similar to Acc-Cubic, the following lemma lower-bounds the high-order term in
SkHLC to the gradient norm, which is identical to Corollary 1 [32].

Lemma 3.4.1. In Instance 3, for k = 0, . . . , T − 1, if γk = 1
2Lm

, then

〈∇f(yk+1), xk+1 − yk+1〉 ≥
Cm

L
1
m
m

‖∇f(yk+1)‖
m+1
m ,

where

Cm =
m

2(m− 1)

(
3(m+ 1)

m− 1

)m−1
2m

((m− 1)!)
1
m .

Then, following the same strategy in Acc-Cubic, ηk is chosen to ensure SkHLC ≥ 0.

Proposition 3.4.2. In Instance 3, for k = 0, . . . , T − 1, if

ηk =
(m+ 1)mCm

mµm+1

mmτmk Lm
,

then SkHLC ≥ 0.

Proof. Based on the choices in Instance 3 and using Lemma 3.4.1 as well as Lemma 3.2.3
(with d(·) (m+ 1)-uniformly convex), we have

SkHLC ≥

(
Cm

τkL
1
m
m

− m

m+ 1

(
ηk
µm+1

) 1
m

)
‖∇f(yk+1)‖

m+1
m .

Substitute the choice of ηk completes the proof.

Finally, we can substitute this ηk in Theorem 3.2.1 and apply Proposition 3.2.2
to estimate the convergence rate of Instance 3:

Corollary 3.4.3. For Instance 3, using the result in Proposition 3.4.2 and based on
Theorem 3.2.1, we can apply Proposition 3.2.2 with ρ = m+ 1 and

C0 =
mmLm

(m+ 1)mCm
mµm+1

,

which concludes an O(1/Tm+1) convergence rate. Concisely, with y0 = z0 = x0

chosen, the following inequality holds at step T − 1:

f(yT )− f(x?) ≤
(m+ 2)m

(
f(x0)− f(x?)

)
+ C0(m+ 1)m+1Vd(x

?, x0)

(T +m+ 1)m+1
.
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3.4.2 Generalized A-HPE

Here we choose the one in [9] (Accelerated Taylor Descent, ATD) as the generalized
A-HPE we discuss in this section. Although there seems to be some differences in
the versions [15] and [9], their convergence results are basically the same. It can be
verified that the Accelerated Taylor Descent can be cast into the following instance
of HLC (Algorithm 6):

Instance 4. ATD corresponds to a case of Algorithm 6 where m ≥ 2 and ∀x, y ∈
E, R(x, y) = γkLm

m!
‖x−y‖m+1 (γk is canceled in the high-order step) and d(·) is strongly

convex with parameter µ2 (e.g., choose d(·) = d2(·)).

First, similar to A-NPE, we specify the parameter scheme for ATD:

γk
τ 2
k

=
γk+1(1− τk+1)

τ 2
k+1

⇒ γk
τ 2
k

τ 2
k+1 + γk+1τk+1 − γk+1 = 0. (3.11)

As we can see, the choice of γk affects τk and thus affects xk+1 in the high-order step.
As is the case of A-NPE, we need the following binary search result:

Proposition 3.4.4 (Binary search, Theorem 4.6, [9]). Let ε > 0 be the required accu-
racy, defining σm = Lmγk

(m−1)!
‖yk+1 − xk+1‖m−1 and using the parameter scheme (3.11),

we can either find a γk that satisfies 1
2
≤ σm ≤ m

m+1
or we can conclude that

f(yk+1)− f(x?) ≤ ε.

Actually, the choice R(x, y) ensures that the sub-problem in the high-order step is
strictly convex, which contributes to the result that the complexity of binary search
is controlled at O(log(1/ε)). Then, we consider constructing a contraction for ATD.

Proposition 3.4.5. In Instance 4, for k = 0, . . . , T − 1, if ηk = γkµ2
τk

, then SkHLC ≥
1−σ2

r

2γkτk
‖yk+1 − xk+1‖2 > 0.

Proof. Since yk+1 is the optimal solution in Step 2, Algorithm 6 (the sub-problem is
strictly convex), the following holds:

−∇f (m)
xk+1

(yk+1) =
m+ 1

m!
Lm‖yk+1 − xk+1‖m−1(yk+1 − xk+1).
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Denote Cm , m+1
m!

Lm‖yk+1 − xk+1‖m−1 = m+1
m
· σm
γk
≤ 1

γk
. Based on the Lm-

Lipschitz continuity of the mth-order derivative (3.3), we have

L2
m

(m!)2
‖yk+1 − xk+1‖2m ≥ ‖∇f(yk+1)−∇f (m)

xk+1
(yk+1)‖2

= ‖∇f(yk+1)‖2 + 2Cm〈∇f(yk+1), yk+1 − xk+1〉
+ C2

m‖yk+1 − xk+1‖2,

〈∇f(yk+1), xk+1 − yk+1〉 ≥
γk
2
‖∇f(yk+1)‖2 +

σm
2γk
· m+ 2

m+ 1
‖yk+1 − xk+1‖2.

Using Lemma 3.2.3 with m = 2 and based on Proposition 3.4.4, we can conclude
that

SkHLC ≥
(
γk
2τk
− ηk

2µ2

)
‖∇f(yk+1)‖2 +

1

4τkγk
· m+ 2

m+ 1
‖yk+1 − xk+1‖2.

Substitute the choice of ηk completes the proof.

Proposition 3.4.6. In Instance 4, using Theorem 3.2.1, Proposition 3.4.5 and the
parameter scheme (3.11), at iteration T − 1, we have

γT−1

τ 2
T−1

(
f(yT )− f(x?)

)
+

m+ 2

4(m+ 1)

T−1∑
k=0

1

τ 2
k

‖yk+1 − xk+1‖2 ≤ D0,

where D0 ,
γ0(1−τ0)

τ20

(
f(y0)− f(x?)

)
+ 1

µ2
Vd(x

?, z0).

Proof. Using Theorem 3.2.1, we get the per-iteration contraction,

γk
τ 2
k

(
f(yk+1)− f(x?)

)
≤ γk(1− τk)

τ 2
k

(
f(yk)− f(x?)

)
+

1

µ2

(
Vd(x

?, zk)− Vd(x?, zk+1)
)

− 1

4τ 2
k

· m+ 2

m+ 1
‖yk+1 − xk+1‖2.

Telescope the above inequality from k = 0, . . . , T completes the proof.

Finally, we can estimate how fast γT−1

τ2T−1
grows with respect to T using similar

techniques in proving Lemma 3.3.7. The proof to the following lemma is given in
Appendix B.3.
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Lemma 3.4.7. Based on Proposition 3.4.4, 3.4.6 and the parameter scheme (3.11),
setting τ0 = 1, the following inequality holds:

γT−1

τ 2
T−1

≥
(

m+ 2

4D0(m+ 1)

)m−1
2
(

1

m+ 1

) 3m+1
2 (m− 1)!

2Lm
· T

3m+1
2 .

From Lemma 3.4.7 and Proposition 3.4.6, it is clear that GA-HPE converges at
the rate of O(1/T

3m+1
2 ).

3.4.3 Comments

Similar to the discussions in Section 3.3.3, generalized A-HPE has the same practical
issue when compared with Acc-Tensor, that we may need a ridiculously small ε to
show the improvement of the rate O(1/T

3m+1
2 ). Actually, this issue is exacerbated

when m is larger.
An analytical observation is that no matter how we change the order of the

regularization term R(x, y), we always need a bounded term γk‖yk+1 − xk+1‖m−1 in
order to achieve acceleration11, which means a binary search is inevitable in this case.
On the other hand, altering the order of R(x, y) may cause the loss of strict convexity
in the high-order step. This observation suggests that in order to design the optimal
high-order method, simply change the the order of R(x, y) is not enough.

3.5 HLC in the first-order case

Interesting though, in the first-order case (Assumption 3.1.1 with m = 1), by setting
m = 1 in Algorithm 6, we get an accelerated method that is different from the
standard Nesterov’s accelerated method (AGD) [33]. Such a method is implied but
not analyzed in [8]. A recently work [12] proposed an accelerated extra-gradient
method (AXGD), whose algorithm structure is significantly different from AGD and
works with a generic norm. In this subsection, we show that AXGD in the Euclidean
norm setting (E-AXGD) is equivalent to this accelerated first-order method.

Instance 5. It can be verified that E-AXGD corresponds to a case of Algorithm 6
where m = 1, ∀x, y ∈ E, R(x, y) = 1

2
‖x − y‖2 and d(x) = 1

2
‖x − x0‖2. Specially,

γk = ηkτk is explicitly chosen based on original parameter choice.

11This is because in the analysis, when γk‖yk+1−xk+1‖m−1 is bounded, we can always fold some
unwanted terms, which correlate to ‖yk+1−xk+1‖m−1, to be constants without affecting the proof.
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Then, based on the analysis framework of HLC, we can conclude the following
results for E-AXGD:

Proposition 3.5.1. If ηk = 1
L1τk

, then SkHLC ≥ 0.

Proof. With L1-Lipschitz continuous gradient assumption and the first-order opti-
mality condition, we have

L2
1‖yk+1 − xk+1‖2 ≤ ‖∇f(yk+1)−∇f(xk+1)‖2

≤ ‖∇f(yk+1) +
1

ηkτk
(yk+1 − xk+1)‖2,

〈∇f(yk+1), xk+1 − yk+1〉 ≥
ηkτk

2
‖∇f(yk+1)‖2 +

(
1

2ηkτk
− ηkτkL

2
1

2

)
‖yk+1 − xk+1‖2

(ηk= 1
L1τk

)

≥ 1

2L1

‖∇f(yk+1)‖2.

Thus,

SkHLC ≥
1

2L1τk
‖∇f(yk+1)‖2 + 〈∇f(yk+1), zk+1 − zk〉+

1

2ηk
‖zk+1 − zk‖2

≥ 1

2L1τk
‖∇f(yk+1)‖2 − ηk

2
‖∇f(yk+1)‖2 = 0.

Then, it is clear that by using Theorem 3.2.2, E-AXGD yields an O(1/T 2) iter-
ation complexity. In fact, we can derive E-AXGD by degenerating both Acc-Cubic
and A-NPE (or A-HPE) into the first-order case.

3.6 Correlation to Linear Coupling

For y ∈ E, the high-order step in HLC (Algorithm 6) uses the Taylor model f
(m)
xk+1(y)

to approximate f(y) and thus this step is close to the proximal point step. Based on
this, the high-order step can be interpreted as a high-order approximate backward-
Euler step. For Linear Coupling, this step becomes the classic forward-Euler step.
Thus, using the ODE interpretation in [19], the correlation here is that HLC and
Linear Coupling are applying different Euler discretization to the accelerated-mirror-
descent dynamics. From an analytical viewpoint, the trick used in Linear Coupling
is slightly more involved. Unlike the clear distinction of the contraction and the
residual term in Theorem 3.2.1, the contraction of Linear Coupling is not obviously
shown in its analysis.
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3.7 Open problems

We identify the following open problems in highly-smooth convex optimization:

• Based on the HLC framework, can we design an optimal second-order method
that eliminates the log factor in the oracle complexity of A-NPE? One possible
solution is to design better auxiliary problems and thus the line search pro-
cedure is dropped. As we can see in this chapter, all these methods focus on
modifying the high-order step (i.e., to upper bound the gradient norm) and use
hyperplane to construct the lower bound. Can we improve the mirror step by
taking high-order Lipschitz continuity (i.e., f(y) ≥ f

(m)
x (y)− Lm

(m+1)!
‖y−x‖m+1)

into consideration?

• Extend high-order methods into non-Euclidean norm setting. Currently, high-
order methods does not work with non-Euclidean norm in the definition of
Lipschitz continuity due to the proofs in Proposition 3.3.2, 3.3.5, 3.4.2, 3.4.5
and 3.5.1. Since AXGD works for non-Euclidean norm, can high-order methods
adopt the techniques in AXGD?

• Proximal accelerated high-order methods? It seems that accelerated high-order
methods cannot work with a proximal part in the objective and the current
methods only work in the unconstrained setting. Deriving a proximal variant
requires more delicate design of the mirror steps in Algorithm 6.



Chapter 4

Conclusion

In this thesis, we discussed accelerated methods in finite-sum convex optimization
and high-order convex optimization. For the finite-sum case, based on SVRG and
SAGA, which are the most popular stochastic variance reduced methods, we proposed
two optimal algorithms, namely, MiG and SSNM. The proposed methods are all as
implementable as SVRG and SAGA while enjoy a faster convergence rate, which
implies that they could potentially benefit many large-scale real world problems. We
also discussed how to make MiG and SSNM work under exactly the same objective
assumptions of SVRG (Prox-SVRG) and SAGA, which shows that our acceleration
techniques are direct and elegant. For the high-order case, we provided a structured
understanding of accelerated methods under high-order smoothness assumption. Our
proposed framework, i.e., High-order Linear Coupling, identifies the limitations of
existing work and some potentials for future improvement. We also discussed some
interesting connections between first-order and high-order acceleration.
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Appendix A

Asynchronous and Sparse MiG

The asynchronous and sparse variant of MiG is formally given in Algorithm 7.
As we can see, it is slightly different from MiG (Algorithm 3). We explain these
differences by making the following remarks:

• Sparse approximate gradient ∇̃(ŷ). In order to perform fully sparse updates,
following [26], we use a diagonal matrix D to re-weigh the dense vector µs,
whose entries are the inverse probabilities {p−1

k } of the corresponding coordi-
nates {k |k=1, . . . , d} belonging to a uniformly sampled support Tij of sample
ij. Pij is the projection matrix for the support Tij . We define Dij = PijD,
which ensures the unbiasedness Eij

[
Dijµs

]
= µs. Here we also define Dm =

maxk=1...d p
−1
k for future usage. Note that we only need to compute y on the

support of sample ij, and hence the entire inner loop updates sparsely.

• Update x̃ with uniform average. In the sparse and asynchronous setting, a
weighted average in Algorithm 3 is not effective due to the perturbation both
in theory and in practice. Thus, we choose a simple uniform average scheme
for a better practical performance.

• Two update options. The difference between the two options is that Option II
corresponds to averaging “fake” iterates defined at (A.2), while Option I is the
average of inconsistent read1 of x. Since the averaging scheme in Option II is
not proposed before, we refer to it as “fake average”. Option II is shown to
be highly practical since the “fake average” scheme only requires updates on
the support of samples and enjoys strong robustness when the actual number

1We could use “fake average” in Option I, but it leads to a complex proof and a worse convergence
rate with factor (∝ κ−2).
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Algorithm 7 Asynchronous Sparse MiG

Input: Initial guess x0, epoch length m, learning rate η, parameter θ.
1: x := shared variable, x̄ := average of x;
2: x̃0 = x = x0;
3: for s = 1 . . .S do
4: Compute µs = ∇F (x̃s−1) in parallel;
5: Option I: x̄ = 0;
6: Option II: x̄ = x;
7: j = 0; {inner loop counter}
8: while j < m do {in parallel}
9: j = j + 1; // atomic increase counter j

10: Sample ij uniformly in {1 . . . n};
11: Tij := support of sample ij;
12: [x̂]Tij := inconsistent read of [x]Tij ;

13: [ŷ]Tij = θ · [x̂]Tij + (1− θ) · [x̃s−1]Tij ;

14: ∇̃(ŷ) = ∇fij([ŷ]Tij )−∇fij([x̃s−1]Tij ) +Dijµs;

15: [u]Tij = −η · ∇̃(ŷ);

16: // atomic write x, x̄ for each coordinate
17: [x]Tij = [x]Tij + [u]Tij ;

18: Option I: x̄ = x̄+ 1
m
· x̂;

19: Option II: [x̄]Tij = [x̄]Tij + [u]Tij ·
(m+1−j)+

m
;

20: end while
21: x̃s = θx̄+ (1− θ)x̃s−1;
22: Option I: x = x̃s;
23: Option II: keep x unchanged;
24: end for
Output: x̃S .

of inner loops does not equal to m2. Thus, Option II leads to a very practical
implementation.

Then we consider analyzing the convergence of Asynchronous Sparse MiG. In
order to give a clean proof, we first make a simpler assumption on the objective

2This phenomenon is prevalent in the asynchronous setting.
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function, which is identical to those in [38, 26, 21]:

min
x∈Rd

F (x) ,
1

n

n∑
i=1

fi(x). (A.1)

Assumption A.0.1 (Sparse and Asynchronous Settings). In Problem (A.1), each
fi(·) is L-smooth, and the averaged function F (·) is µ-strongly convex.

Following [26], our analysis is based on the “fake” iterates x and y, which are
defined as:

xj = x0 − η
j−1∑
i=0

∇̃(ŷi), yj = θxj + (1− θ)x̃s−1, (A.2)

where the “perturbed” iterates ŷ, x̂ with perturbation ξ are defined as

ŷj = θx̂j + (1− θ)x̃s−1, x̂j = xj + ξj. (A.3)

Note that y is a temp variable, so the only source of perturbation comes from x.
This is the benefit of keeping track of only one variable vector since it controls the
perturbation and allows us to give a smooth analysis in asynchrony.

Next we give our convergence result as follows:

Theorem A.0.1. If Assumption A.0.1 holds, then by choosing m=60κ, η=1/(5L),

θ=1/6, suppose τ satisfies τ ≤min { 5
4
√

∆
, 2κ,

√
2κ√
∆
} (the linear speed-up condition),

Algorithm 7 with Option I has the following oracle complexity:

O
(

(n+ κ) log
F (x0)− F (x?)

ε

)
,

where τ represents the maximum number of overlaps between concurrent threads [26]
and ∆=maxk=1...d pk, which is a measure of sparsity [21].

This result is better than that of KroMagnon, which correlates to κ2 [26], and
keeps up with ASAGA [21]. Although without significant improvement on theoretical
bounds due to the existence of perturbation, the coupling step of MiG can still be
regarded as a simple add-on boosting and stabilizing the performance of SVRG
variants.
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Figure A.1: Comparison of KroMagnon [26], ASAGA [21], and MiG (Algorithm 7
with Option II) with 16 threads. First row: RCV1, `2-logistic regression with λ=
10−9. Second row: KDD2010, `2-logistic regression with λ=10−10.

A.1 Experimental results

Unlike in the serial dense case (Algorithm 3) where we have strong theoretical guar-
antees, in these settings, we mainly focus on practical performance and stability.
So we carefully tuned the parameter(s) for each algorithm to achieve a best-tuned
performance. We measure the performance on the two sparse datasets listed in Ta-
ble A.1.

Dataset # Data # Features Density
RCV1 697,641 47,236 1.5 × 10−3

KDD2010 19,264,097 1,163,024 10−6

Table A.1: Summary of the two sparse data sets.
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Figure A.2: Speed-up evaluation on RCV1. Left: Evaluation of sub-optimality in
terms of running time for asynchronous versions (20 threads) and SS (Serial Sparse)
versions. Right: Speed-up of achieving 10−5 sub-optimality in terms of the number
of threads.

When comparing performance in terms of oracle calls, MiG significantly outper-
forms other algorithms, as shown in Figure A.1. When considering running time,
the difference is narrowed due to the high simplicity of KroMagnon (which only uses
one atomic vector) compared with ASAGA (which uses atomic gradient table and
atomic gradient average vector) and MiG (which only uses atomic “fake average”).

We then examine the speed-up gained from more parallel threads on RCV1. We
evaluate the improvement of using asynchronous variants (20 threads) and the speed-
up ratio as a function of the number of threads as shown in Figure A.2. For the
latter evaluation, the running time is recorded when the algorithms achieve 10−5

sub-optimality. The speed-up ratio is calculated based on the running time of a
single core.

A.2 Proof of Theorem A.0.1

Here we analyze Algorithm 7 based on the “perturbed iterate analysis” frame-
work [26].

To begin with, we need to specify the iterates labeling order, which is crucial in
our asynchronous analysis.

Choice of labeling order. There are “Before Read” [26] and “After Read” [21] label-
ing schemes proposed in recent years which are reasonable in asynchronous analysis.
Among these two schemes, “Before Read” requires considering the updates from “fu-
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ture”, which leads to a complex analysis. “After Read” enjoys a simpler analysis but
requires changing the order of sampling step to ensure uniform distributed samples3.
In order to give a clean proof, we adopt the “After Read” labeling scheme and make
the following assumptions:

Assumption A.2.1. The labeling order increases after the step (14) in Algorithm 7
finished, so the future perturbation is not included in the effect of asynchrony in the
current step.

Assumption A.2.2. We explicitly assume uniform distributed samples and the in-
dependence of the sample ij with x̂j−1.

In other words, we are analyzing the following procedure:

1. Inconsistent read the iterate x̂j−1.

2. Increase iterates counter j and sample a random index ij.

3. Compute an update −η · ∇̃(ŷj−1).

4. Atomic write the update to shared memory coordinately.

Then, we give the sparse variance bound as follows, which is important in ob-
taining the linear convergence rate.

Lemma A.2.1 (Sparse Variance Bound). If Assumption A.0.1 holds, for any y, x̃ ∈
Rd and the sample ij, denote ∇̃ = ∇fij(y) − ∇fij(x̃) + Dij∇F (x̃), where Dij is

defined in Section A, we can bound the variance Eij
[
‖∇̃‖2

]
as

Eij
[
‖∇̃‖2

]
≤ 4L

(
F (y)− F (x?)

)
+ 4L

(
F (x̃)− F (x?)

)
.

Proof. From Lemma 10 in [26], we have

Eij
[
‖∇̃‖2

]
≤ 2Eij

[
‖∇fij(y)−∇fij(x?)‖2

]
+ 2Eij

[
‖∇fij(x̃)−∇fij(x?)‖2

]
, (A.4)

which provides an upper bound for the variance of the sparse stochastic variance
reduced gradient estimator.

From Theorem 2.1.5 in [31], we have

‖∇fij(y)−∇fij(x?)‖2 ≤ 2L
(
fij(y)− fij(x?)− 〈∇fij(x?), y − x?〉

)
.

3So there are always two versions (analyzed, implemented) of algorithms in the works with
“After Read” scheme [21, 37]
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Taking expectation with the sample ij, the above inequality becomes

Eij
[
‖∇fij(y)−∇fij(x?)‖2

]
≤ 2L

(
F (y)− F (x?)

)
.

Similarly, we have

Eij
[
‖∇fij(x̃)−∇fij(x?)‖2

]
≤ 2L

(
F (x̃)− F (x?)

)
.

Substituting the above inequalities into (A.4) yields the desired result.

From [21], we can model the effect of asynchrony as follows:

x̂j − xj = η

j−2∑
k=(j−1−τ)+

Sjk∇̃(ŷk), (A.5)

where Sjk is a diagonal matrix with entries in {0,+1}. This definition models the coor-
dinate perturbation from the past updates. Here τ represents the maximum number
of overlaps between concurrent threads [26]. We further denote ∆ = maxk=1...d pk
following [21], which provides a measure of sparsity.

Then we start our analysis with the iterate difference between “fake” yj and
x?. By expanding the iterate difference and taking expectation with respect to the
sample ij, we get

Eij
[
‖yj − x?‖2

]
= Eij

[
‖θ(xj−1 − η · ∇̃(ŷj−1)) + (1− θ)x̃s−1 − x?‖2

]
= Eij

[
‖yj−1 − ηθ · ∇̃(ŷj−1)− x?‖2

]
(?)
= ‖yj−1 − x?‖2 − 2ηθ〈∇F (ŷj−1), ŷj−1 − x?〉+ η2θ2Eij

[
‖∇̃(ŷj−1)‖2

]
(A.6)

+ 2ηθEij
[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
,

where (?) uses the unbiasedness Eij
[
∇̃(ŷj−1)

]
= ∇F (ŷj−1) and the independence

Assumption A.2.2.
Using Lemma A.2.1, we get the variance bound

Eij
[
‖∇̃(ŷj−1)‖2

]
≤ 4L

(
F (ŷj−1)− F (x?)

)
+ 4L

(
F (x̃s−1)− F (x?)

)
. (A.7)

Using the µ-strongly convex of F (·), we can bound −〈∇F (ŷj−1), ŷj−1−x?〉 as follows:

〈∇F (ŷj−1), ŷj−1 − x?〉 ≥ F (ŷj−1)− F (x?) +
µ

2
‖ŷj−1 − x?‖2

(?)

≥ F (ŷj−1)− F (x?) +
µ

4
‖yj−1 − x?‖2 − µ

2
‖ŷj−1 − yj−1‖2,

(A.8)
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where (?) uses the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

Combining (A.6), (A.7) and (A.8), we get

Eij
[
‖yj − x?‖2

]
≤ (1− ηθµ

2
)‖yj−1 − x?‖2 + ηθµ‖ŷj−1 − yj−1‖2

+ 2ηθEij
[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
+ (4Lη2θ2 − 2ηθ)

(
F (ŷj−1)− F (x?)

)
+ 4Lη2θ2

(
F (x̃s−1)− F (x?)

)
. (A.9)

From Lemma 1 in [21], we borrow the notations C1 = 1+
√

∆τ , C2 =
√

∆+ηθµC1 and
bound the asynchronous variance terms ‖ŷj−1 − yj−1‖2, Eij

[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
using (A.5) as

Eij
[
〈∇̃(ŷj−1), ŷj−1 − yj−1〉

]
≤ ηθ

√
∆

2

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2 +
ηθ
√

∆τ

2
Eij
[
‖∇̃(ŷj−1)‖2

]
,

(A.10)

‖ŷj−1 − yj−1‖2 ≤ η2θ2(1 +
√

∆τ)

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2. (A.11)

Upper bounding the asynchronous terms in (A.9) using (A.10) and (A.11), we get

Eij
[
‖yj − x?‖2

]
≤ (1− ηθµ

2
)‖yj−1 − x?‖2

+ η2θ2(
√

∆ + ηθµ(1 +
√

∆τ))

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2

+ (4Lη2θ2(1 +
√

∆τ)− 2ηθ)
(
F (ŷj−1)− F (x?)

)
+ 4Lη2θ2(1 +

√
∆τ)

(
F (x̃s−1)− F (x?)

)
.

Defining aj , ‖yj − x?‖2, D̂j−1 = F (ŷj−1) − F (x?), D̃s−1 = F (x̃s−1) − F (x?) for a
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clean proof and rearranging, we obtain

Eij
[
aj
]
≤ (1− ηθµ

2
)aj−1 + η2θ2C2

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2 + (4Lη2θ2C1 − 2ηθ)D̂j−1

+ 4Lη2θ2C1D̃s−1,

(2ηθ−4Lη2θ2C1)D̂j−1

(?)

≤ (aj−1 − Eij
[
aj
]
) + η2θ2C2

j−2∑
k=(j−1−τ)+

‖∇̃(ŷk)‖2

+ 4Lη2θ2C1D̃s−1, (A.12)

where (?) uses the fact that 1− ηθµ
2
≤ 1.

Summing (A.12) over j = 1 . . .m and taking expectation with all randomness in
this epoch, we get

(2ηθ − 4Lη2θ2C1)
m∑
j=1

E
[
D̂j−1

]
≤ (a0 − E

[
am
]
) + η2θ2C2

m∑
j=1

j−2∑
k=(j−1−τ)+

E
[
‖∇̃(ŷk)‖2

]
+ 4Lη2θ2C1mD̃s−1.

(A.13)
Then we focus on upper bounding the second term on the right side of (A.13),

m∑
j=1

j−2∑
k=(j−1−τ)+

E
[
‖∇̃(ŷk)‖2

]
≤ τ

m−1∑
j=1

E
[
‖∇̃(ŷj−1)‖2

]
≤ τ

m∑
j=1

E
[
‖∇̃(ŷj−1)‖2

]
(?)

≤ 4Lτ
( m∑
j=1

E
[
D̂j−1

]
+mD̃s−1

)
,

where (?) uses the variance bound (A.7).
Substituting the above inequality into (A.13), we get

(2ηθ − 4Lη2θ2C1 − 4Lη2θ2C2τ)
m∑
j=1

E
[
D̂j−1

]
≤ a0 + (4Lη2θ2C1m+ 4Lη2θ2C2τm)D̃s−1,

D̃s

(?)

≤
2
µ

+ 4Lη2θ2C1m+ 4Lη2θ2C2τm

(2ηθ − 4Lη2θ2C1 − 4Lη2θ2C2τ)m
· D̃s−1,
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where (?) uses the µ-strongly convex of F (·) and x̃0 = x0 = y0, x̃s = 1
m

∑m−1
j=0 ŷj.

By choosing m = 60κ, η = 1
5L

, θ = 1
6
, we get

D̃s ≤
2 + 4

15
(C1 + C2τ)

4− 4
15

(C1 + C2τ)
· D̃s−1.

In order to ensure linear speed up, τ needs to satisfy the following constraint:

ρ ,
2 + 4

15
(C1 + C2τ)

4− 4
15

(C1 + C2τ)
≤ 1.

By simply setting τ ≤ min { 5
4
√

∆
, 2κ,

√
2κ√
∆
}, the above constraint is satisfied with

ρ ≤ 0.979, which implies that the total oracle complexity is O
(
(n+κ) log F (x̃0)−F (x?)

ε

)
.



Appendix B

Missing Proofs in Chapter 3

B.1 Technical Results

Lemma B.1.1. Given positive parameters {ak}Tk=0, {tk}Tk=0, n, C, if

T∑
k=1

ak
tnk
≤ C,

then
T∑
k=1

tk ≥
1

C
1
n

(
T∑
k=1

a
1

n+1

k

)n+1
n

.

Proof. Using Hölder’s inequality, we have T∑
k=1

a 1
n+1

k

t
n
n+1

k

n+1
1

n+1 (
T∑
k=1

(
t

n
n+1

k

)n+1
n

) n
n+1

≥
T∑
k=1

a
1

n+1

k ,

C
1

n+1

(
T∑
k=1

tk

) n
n+1

≥
T∑
k=1

a
1

n+1

k .

Re-arranging the above inequality completes the proof.

B.2 Proof of Lemma 3.3.7

The proof is based on the techniques in Lemma 4.2, [28] with some minor modifica-
tions that make the proof more natural in our parameter settings.
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Recall the following two critical relations:

(I)
γk
τ 2
k

=
γk+1

τ 2
k+1

− γk+1

τk+1

(Parameter scheme (3.10)), for k = 0, . . . , T − 1,

(II)
1− σ2

r

2

T−1∑
k=0

1

τ 2
k

‖yk+1 − xk+1‖2 ≤ D0 (Proposition 3.3.6).

From (I), we can conclude that

γT−1

τ 2
T−1

=
γ0

τ 2
0

+
T−1∑
k=1

γk
τk
. (B.1)

Based on the result of the line search procedure (Proposition 3.3.4), we have

‖yk+1 − xk+1‖2 ≥ 4σ2
l

γ2
kL

2
2

.

Together with (II), we can conclude that

D0 ≥
1− σ2

r

2

T−1∑
k=0

1

τ 2
k

‖yk+1 − xk+1‖2 ≥ 2(1− σ2
r)σ

2
l

L2
2

T−1∑
k=0

1

τ 2
kγ

2
k

. (B.2)

Then, we need to correlate the above inequality with (B.1). Note that

1

τ 2
kγ

2
k

=

(
γk
τ 2
k

)4

·
(
γk
τk

)−6

.

By denoting C , D0L2
2

2(1−σ2
r)σ2

l
, we can write (B.2) as

T−1∑
k=0

(
γk
τ 2
k

)4

·
(
γk
τk

)−6

≤ C.

Now it is clear that we can apply Lemma B.1.1 with ak+1 =
(
γk
τ2k

)4

, tk+1 = γk
τk
, n =

6, C = C, for k = 0, . . . , T − 1, which results in

T−1∑
k=0

γk
τk
≥ 1

C 1
6

(
T−1∑
k=0

(
γk
τ 2
k

) 4
7

) 7
6

. (B.3)
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In comparison with (B.1), we see that it is crucial to ensure γ0
τ20

= γ0
τ0
⇒ τ0 = 1.

Using the same technique as in [28], we construct two infinite non-negative se-
quences {bi}∞i=0, {ζi}∞i=0, which are required to satisfy

γk
τ 2
k

≥ bi(k + 1)ζi , for k = 0, . . . , T − 1, and i = 0, 1, . . . . (B.4)

First, to ensure (B.4) at i = 0, we can choose b0 = γ0, ζ0 = 0 and thus (B.4) holds
due to (I) and τ0 = 1.

Then, suppose (B.4) holds at i, by (B.3) and τ0 = 1, we have

γT−1

τ 2
T−1

=
T−1∑
k=0

γk
τk
≥ 1

C 1
6

(
T−1∑
k=0

(
γk
τ 2
k

) 4
7

) 7
6

≥ b
2
3
i

C 1
6

(
T∑
k=1

(
k4ζi/7

)) 7
6

(?)

≥ b
2
3
i

C 1
6

(
T 4ζi/7+1

4ζi/7 + 1

) 7
6

=
b

2
3
i

C 1
6 (4ζi/7 + 1)

7
6

T 2ζi/3+7/6, (B.5)

where (?) holds because 0 ≤ x 7→ x4ζi/7 is non-decreasing and thus
∑T

k=1 k
4ζi/7 ≥∫ T

0
t4ζi/7dt.

Thus, by requiring that ζi+1 = 2ζi
3

+ 7
6
, we can set {ζi}∞i=0 as

ζi =
7

2

(
1−

(
2

3

)i)
, for i = 0, 1, . . . .

Note that based on this choice, ζi ≤ 7
2

and thus

b
2
3
i

C 1
6 (4ζi/7 + 1)

7
6

≥ b
2
3
i

C 1
6 3

7
6

.

Then it is clear that by setting bi+1 =
b
2
3
i

C
1
6 3

7
6

, the sequence {bi}∞i=0 can be chosen
as

bi =
1

C1/237/2

(
γ0 · C1/237/2

)(2/3)i

, for i = 0, 1, . . . .
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Based on these choices of bi+1 and ζi+1, (B.5) can be written as γT−1

τ2T−1
≥ bi+1T

ζi+1 .

It remains to use the iterative nature of (II) (Proposition 3.3.6) to show that for
T ′ = 1, . . . T − 2,

γT ′
τ2
T ′
≥ bi+1(T ′ + 1)ζi+1 using exactly the above arguments. Then, by

induction, {bi}∞i=0, {ζi}∞i=0 satisfy the target relation (B.4).
Finally, letting i goes to ∞, we obtain

γT−1

τ 2
T−1

≥

√
2(1− σ2

r)

37D0

σl
L2

· T
7
2 .

B.3 Proof of Lemma 3.4.7

Similar to the proof of Lemma 3.3.7, we first state the following relations:

(I)
γk
τ 2
k

=
γk+1

τ 2
k+1

− γk+1

τk+1

(Parameter scheme (3.11)), for k = 0, . . . , T − 1,

(II)
m+ 2

4(m+ 1)

T−1∑
k=0

1

τ 2
k

‖yk+1 − xk+1‖2 ≤ D0 (Proposition 3.4.6).

For (I), by choosing τ0 = 1, we have

γT−1

τ 2
T−1

=
T−1∑
k=0

γk
τk
. (B.6)

For (II), using Proposition 3.4.4, which implies

‖yk+1 − xk+1‖2 ≥
(

(m− 1)!

2Lmγk

) 2
m−1

,

we can conclude that
T−1∑
k=0

1

τ 2
kγ

2
m−1

k

≤ C2, (B.7)

where C2 ,
4D0(m+1)
m+2

(
2Lm

(m−1)!

) 2
m−1

.

Reformulate (B.7),

T−1∑
k=0

(
γk
τ 2
k

) 2m
m−1

·
(
γk
τk

)− 2m+2
m−1

≤ C2.
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Applying Lemma B.1.1 with ak+1 =
(
γk
τ2k

) 2m
m−1

, tk+1 = γk
τk
, n = 2m+2

m−1
, C = C2, we

obtain
T−1∑
k=0

γk
τk
≥ 1

C2

m−1
2m+2

(
T−1∑
k=0

(
γk
τ 2
k

) 2m
3m+1

) 3m+1
2m+2

. (B.8)

Here we construct two non-negative sequence {ζi}∞i=0, {bi}∞i=0 and the target rela-
tion is identical to relation (B.4).

γk
τ 2
k

≥ bi(k + 1)ζi , for k = 0, . . . , T − 1, and i = 0, 1, . . . . (B.9)

First, at i = 0, we choose b0 = γ0, ζ0 = 0 and then (B.9) holds due to (I).
Then, suppose (B.9) holds at i, by (B.8), (B.6), we have

γT−1

τ 2
T−1

≥ 1

C2

m−1
2m+2

(
T−1∑
k=0

(
γk
τ 2
k

) 2m
3m+1

) 3m+1
2m+2

≥ b
m
m+1

i

C2

m−1
2m+2

(
T∑
k=1

k
2mζi
3m+1

) 3m+1
2m+2

(?)

≥ b
m
m+1

i

C2

m−1
2m+2

(
3m+ 1

(2ζi + 3)m+ 1

) 3m+1
2m+2

T
(2ζi+3)m+1

2m+2 (B.10)

where (?) holds because 0 ≤ x 7→ x
2mζi
3m+1 is non-decreasing, and thus

T∑
k=1

k
2mζi
3m+1 ≥

∫ T

0

t
2mζi
3m+1dt =

3m+ 1

(2ζi + 3)m+ 1
T

2mζi
3m+1

+1.

Suppose we want to ensure ζi+1 = (2ζi+3)m+1
2m+2

, the sequence {ζi}∞i=0 can be defined
as

ζi =
3m+ 1

2

(
1−

(
m

m+ 1

)i)
, for i = 0, 1, . . . .

which implies that ζi ≤ 3m+1
2

.
For sequence {bi}∞i=0, observe that

b
m
m+1

i

C2

m−1
2m+2

(
3m+ 1

(2ζi + 3)m+ 1

) 3m+1
2m+2

≥ b
m
m+1

i

C2

m−1
2m+2

(
1

m+ 1

) 3m+1
2m+2

,
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we can set

bi+1 =
b

m
m+1

i

C2

m−1
2m+2

(
1

m+ 1

) 3m+1
2m+2

=⇒ bi =
1

C2

m−1
2

(
1

m+ 1

) 3m+1
2

(
γ0

C2

m−1
2

(
1

m+ 1

) 3m+1
2

)( m
m+1)

i

, for i = 0, 1, . . . .

Based on these choices, we have γT−1

τ2T−1
≥ bi+1T

ζi+1 . It remains to use the it-

erative nature of (II) (Proposition 3.4.6) to show that for T ′ = 1, . . . T − 2,
γT ′
τ2
T ′
≥

bi+1(T ′ + 1)ζi+1 using exactly the above arguments. Then, by induction, {bi}∞i=0, {ζi}∞i=0

satisfy the target relation (B.9).
Finally, letting i goes to ∞, we obtain

γT−1

τ 2
T−1

≥
(

m+ 2

4D0(m+ 1)

)m−1
2
(

1

m+ 1

) 3m+1
2 (m− 1)!

2Lm
· T

3m+1
2 .
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