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Abstract

In this extended abstract, we consider Bayesian Optimization
(BO) of composite objective functions. By identifying a fail-
ure case of the existing composite BO method, we deepen
the understanding of composite BO. Then, by proposing a
novel Region-Of-Interest strategy using two-precision Gaus-
sian Process for composite BO, we resolve the failure case
and achieve better numerical results on several test functions.

Introduction
Bayesian Optimization (BO) treats the objective function f
as a black box, and adopts a surrogate model for f such
as Gaussian Process (GP). By using a delicate acquisition
function (e.g., EI, GP-UCB) to determine the next sam-
ple point, BO iteratively maximizes f . In this extended ab-
stract, we consider BO with a composite objective structure
f = g ◦ h, where h : X → Rm is a black-box expensive-to-
evaluate continuous function whose evaluations do not pro-
vide derivatives, and g : Rm → R is a white-box function
that can be cheaply evaluated, and X ⊂ Rd. As is common
in BO, we assume that d is not too large (< 20) and that pro-
jections onto X can be efficiently computed. The problem to
be solved is

max
x∈X

f(x) := g(h(x)). (1)

Clearly, one can solve problem (1) by applying standard BO
to the objective function f . However, since the original BO
only uses the function values {f(xi)}ni=1 that are evaluated
so far, the intermediate outputs {h(xi)}ni=1 are all neglected.
Astudillo and Frazier (2019) proposed to leverage this addi-
tional information of h, along with the white-box knowledge
of g. Specifically, they use a multi-output GP to model h (de-
noted as hn) and propose the following Expected Improve-
ment for Composite Functions (EI-CF):

EI-CFn(x) := En

[
{g(hn(x))− f∗

n}
+
]
, (2)

where f∗
n := maxi=1,...,n f(xi) is the maximum value

across the points Xn := {x1, . . . , xn} that have been eval-
uated so far, En indicates the conditional expectation given
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the available observations at time n, {(xi, h(xi))}ni=1, and
a+ := max(0, a). That is, EI-CF models f(x) by the com-
position of g and the normally distributed posterior distribu-
tion hn(x). More concretely, h is modeled by a multi-output
GP hn ∼ GP(µ, k), where µ : X → Rm is the mean func-
tion, k : X ×X → Sm

++ is the covariance function, and Sm
++

is the cone of positive definite matrices.
In this extended abstract, we deepen the understanding

of composite BO by identifying one of its failure case,
which reveals its underlying mechanism. Then, by propos-
ing a novel Region-Of-Interest (ROI) strategy using two-
precision GP for composite BO, we resolve the failure case
and achieve better numerical results on 3 test functions.

A Failure Case of Composite BO
It is natural to ask whether leveraging the composite struc-
ture (1) always lead to a performance improvement. Intu-
itively, by explicitly incorporating the white-box structure g
at (2), the implied posterior distribution would be a more
accurate surrogate model to f (as provided in Figure 1 in
(Astudillo and Frazier 2019)). We claim that this is not al-
ways the case by providing the following counter example:
Let the kernel be the square exponential kernel with fixed
length scale 1 and scale factor

√
2. We construct an example

where both f and h has zero mean (x ∈ [−1.5, 1.5]):

h(x) =
(
e−

(x−1)2

2 − e−
(x+1)2

2

)3
, g(x) = x1/3. (3)

Then, as shown in Figure 1a, with two observations x1 =
−0.8, x2 = 0.8, the implied posterior distribution of com-
posite BO is a much worse surrogate model than standard
BO. This failure stems from the fact that the h in (3) is much
harder to model precisely than f . This failure case under-
lines the potential negative effect of composite BO, which
motivates us to devise a more robust composite BO solution
that resolves such flaw in the following section.

Composite BO with Robust Grey-Box ROI
To address the failure case of composite BO, we propose
a novel approach that combines the information from both
black-box GP and grey-box (or composite) GP, as it is
usually hard to know a priori which one fits the objec-
tive f better. To leverage the information provided by the
black-box GP GPf , we define its upper confidence bound
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Figure 1: (a) A failure case and (b) numerical results of CORGI on three test functions.

Algorithm 1: Composite BO with Robust Grey-Box ROI

1: for n = 1 to N do
2: Partition Xn, X̂n := {x ∈ Xn | x ∈ ROIB ∩ROIG}.
3: Fit local grey-box GP on X̂n.
4: Let UCBĝ,n LCBĝ,n denote the Grey-box UCB and

LCB on X̂n. Find xn+1 via the ICI acquisition func-
tion (Zhang et al. 2023), i.e., xn+1 =

argmax
x∈ROIB∩ROIG

{
min

ς∈{g,ĝ}
UCBς,n(x)− max

ς∈{g,ĝ}
LCBς,n(x)

}
5: end for

UCBf,n(x) := µf,n−1(x) + β
1/2
n σf,n−1(x) and lower con-

fidence bound LCBf,n(x) := µf,n−1(x) − β
1/2
n σf,n−1(x),

where σf,n−1(x) = kf,n−1(x, x)
1/2 and β acts as an scaling

factor. Then, the maximum of the lower confidence bound
LCBf,n := maxx∈X LCBf,n(x) can be used as the thresh-
old to define the black-box ROI, i.e., ROIB := {x ∈ X |
UCBf,n(x) ≥ LCBf,n}, which has been proved by Zhang
et al. (2023) that ROIB contains the global optimum with
high probability. Motivated by this construction, we propose
the grey-box ROI, which is formulated as:

ROIG := {x ∈ X | UCBg,n(x) ≥ LCBg,n}, (4)

where the grey-box UCB is defined as UCBg,n(x) :=
maxLCBh,n(x)≤z≤UCBh,n(x) g(z), LCBh,n and UCBh,n are
similarly defined based on GPh. As GPh can be a multi-
output GP, the inequality constraint is element-wise. Then,
we can similarly define the threshold for the grey-box
ROI: LCBg,n := maxx∈X LCBg,n(x), where we define
LCBg,n(x) := minLCBh,n(x)≤z≤UCBh,n(x) g(z). Based on
these constructions and the two-precision GP framework
BALLET in (Zhang et al. 2023), we propose our algorithm
Composite BO with Robust Grey-Box ROI (CORGI) in Al-
gorithm 1. Note that the auxiliary problems in the grey-box
constructions are assumed to be efficiently solvable, using
grid search or a gradient-based optimizer (Xu et al. 2023).

Experiments
We conducted a comprehensive comparison between
CORGI, EI-CF, and standard methods in BO. The standard
methods we considered were: Random (choosing points to

evaluate uniformly at random over X ), EI, GP-UCB, and
the Knowledge Gradient (KG). In our experimental setup,
we performed 100 trials for each method across several test
functions. For all problems and methods, we initially eval-
uated 2(d + 1) points chosen uniformly at random over X
as a warm-up for GP. Subsequently, a second stage was con-
ducted using each of the algorithms. To demonstrate the re-
sults of the second stage, we present a subset of our findings
in Figure 1b, which showcases the results for three synthetic
problems: Drop-Wave, Langermann, and Cross-in-Tray. The
Drop-Wave and Langermann test functions were adapted
from (Astudillo and Frazier 2019) and (Astudillo and Fra-
zier 2021), respectively. The Cross-in-Tray test function is
formulated as follows:

f(x) = 0.001
(∣∣ sin(x1) sin(x2) exp

(∣∣100− ∥x∥2

π

∣∣)∣∣+ 1
)0.1

,

where h(x) = | sin(x1) sin(x2) exp(|100 − ∥x∥2

π |)| and
g(z) = 0.001(z + 1)0.1. The inner function h in the Cross-
in-Tray test function is evidently more complex compared
to that of the Drop-Wave and Langermann functions. Conse-
quently, while EI-CF outperforms EI significantly on Drop-
Wave and Langermann, EI-CF performs worse than EI on
Cross-in-Tray. However, regardless of the specific cases, our
proposed method CORGI still consistently outperforms all
the baseline methods. Remarkably, even when EI-CF per-
forms poorly, CORGI manages to achieve satisfactory re-
sults, which is due to the robust grey-box ROI construction.
Additionally, CORGI exhibits superior robustness compared
to all the compared methods, as evidenced by its lower stan-
dard deviation. This showcases the reliability and effective-
ness of our approach.
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